
Text Mining

Martial Luyts

Catholic University of Leuven, Belgium

martial.luyts@kuleuven.be

Contents

1. Introduction . 1

1.1 Introductory material . 2

1.2 What is Text Mining . 6

1.3 Comparison with other fields . 9

1.4 Some text mining applications 13

2. Text mining process . 19

2.1 General overview . 20

2.2 Text Pre-processing . 21

i

2.2.1. Text cleanup . 22

2.2.2. Tokenization . 23

2.2.3. Filtering . 27

2.2.4. Stemming & lemmatization . 30

2.2.5. Chunking & parsing . 95

2.2.6. Semantics . 117

2.3 Attribute Generation . 120

2.3.1. One-hot encoding . 123

2.3.2. Bag of Words . 126

2.3.3. Term Frequency - Inverse Document Frequency 132

2.3.4. Pointwise Mutual Information . 140

2.3.5. Word embeddings . 150

c© Martial Luyts ii

2.4 Attribute Selection . 172

2.5 Text Mining Techniques . 173

2.5.1. Language Models . 174

2.5.2. Text classification . 261

REFERENCES . 301

c© Martial Luyts iii

Part 1:

Introduction

c© Martial Luyts 1

1. Introductory material

• Nowadays, we have (and still produce) an extensive amount of electronic books,
documents, web pages, emails, blogs, news, chats, memos, research papers, ...

• These subjects/items are immediately accessible, thanks to databases and
Information Retrieval (IR)

. Information Retrieval (IR): Process of obtaining information system
resources (usually documents) that are relevant to an information need from
a collection of those resources. Web search engines are the most visible IR
applications.

c© Martial Luyts 2

• Challenge: Approximately 80% of all data stored in databases are natural
language texts.

c© Martial Luyts 3

• Analyze the texts to identify and structure relevant information are extremely
relevant.

. This task is called Natural Language Processing (NLP).

. Natural Language Processing (NLP): One of the oldest and most
challenging problems in the field of artificial intelligence. It is the study of
human language so that computers can understand natural languages as
humans do.

c© Martial Luyts 4

. NLP research pursues the vague question of how we understand the meaning
of a sentence or a document. What are the indications we use to understand
who did what to whom, or when something happened, or what is fact and
what is supposition or prediction? While words - nouns, verbs, adverbs and
adjectives - are the building blocks of meaning, it is their correlation to each
other within the structure of a sentence in a document, and within the
context of what we already know about the world, that provides the true
meaning of a text.

• Afterwards, one can discover patterns in the structured information (Data
Mining (DM)).

c© Martial Luyts 5

2. What is Text Mining?

In a nutshell:

• Automatic discovery of previously unknown information of high quality in large
amounts of mostly unstructured natural language text. The goal is, essentially to
turn text (unstructured data) into data (structured format) for analysis, via the
use of NLP methods.

Major text mining steps:

• Information Retrieval (IR)

• Information Extraction (IE)

• Computational Linguistics (CL) & Natural Language Processing
(NLP)

• Data & Web Mining

c© Martial Luyts 6

c© Martial Luyts 7

• Therefore, to derive text mining, one need to have knowledge of many fields
such as IE, NLP, IR, etc.

• In what follows, we will make a comparison between text mining and some of
these fields

c© Martial Luyts 8

3. Comparison with other �elds

1. Text mining vs. IR

• Information retrieval (IR) mostly focused on facilitating information access rather
than analyzing information and finding hidden patterns, which is the main
purpose of text mining.

• IR has less priority on processing or transformation of text whereas text mining
can be considered as going beyond information access to further aid users to
analyze and understand information and ease the decision making.

c© Martial Luyts 9

2. Text mining vs. IE

• Information extraction (IE) is the task of automatically extracting information or
facts from unstructured or semi-structured document.

• It usually serves as a starting point for other text mining algorithms, e.g.,
extraction entities, Name Entity Recognition (NER).

c© Martial Luyts 10

3. Text mining vs. CL & NLP

• Computational linguistics (CL) is the scientific discipline concerned with
understanding written and spoken language from a computational perspective

• While CL has more of a focus on aspects of language, NLP emphasizes its use of
machine learning and deep learning techniques to complete tasks, like language
translation or question answering.

• Many of the text mining algorithms extensively make use of NLP techniques,
such as part of speech tagging (POG), syntactic parsing and other types of
linguistic analysis. Therefore, one can say that NLP is an important aspect in
text mining!

c© Martial Luyts 11

4. Text mining vs. data mining

• Text mining is similar to data mining, except that data mining tools are designed
to handle structured data from databases, but text mining can also work with
unstructured or semi-structured data sets such as emails, text documents and
HTML files etc. As a result, text mining is a far better solution.

5. Text mining vs. web mining

• In text mining, the input is commonly free unstructured text, whilst web-mining
limits itself to web sources, i.e., structured or semi-structured of nature.

c© Martial Luyts 12

4. Some text mining applications

• Classification of news stories

c© Martial Luyts 13

• Email and news filtering / SPAM detection

c© Martial Luyts 14

• Automatic text summarization

c© Martial Luyts 15

• Sentiment analysis

c© Martial Luyts 16

• Search term auto-completion

c© Martial Luyts 17

• Chatbots

c© Martial Luyts 18

Part 2:

Text mining process

c© Martial Luyts 19

1. General overview

Text mining involves a series of activities to be performed in order to efficiently mine
the information. These activities are:

c© Martial Luyts 20

2. Text Pre-processing

• Text pre-processing is one of the key components in many text mining
algorithms.

• It is applied on a (collection of) document(s) containing unstructured or
semi-structure data.

• Task: Converting a raw text file into a well-defined sequence of
linguistically-meaningful units

• To do so, different steps are usually performed, i.e., text cleanup, tokenization,
filtering (stop word removal), lemmatizaion, stemming.

• In what follows, we will discuss them briefly.

c© Martial Luyts 21

2.1 Text cleanup

It performs tasks such as removal of:

• advertisement from web pages;

• punctuation and HTML tags;

• tables, figures, etc.

c© Martial Luyts 22

2.2 Tokenization

• Tokenization is the process of breaking up a given text into units called tokens,
based on certain delimiter(s) and/or rule(s).

• These tokens can be characters, subwords (n-gram characters), words, phrases or
even whole sentences.

• Example 1: Consider the sentence ”Never give up”

• The most common way of forming tokens is based on white spaces
(delimiter).

• Word tokens: Never-give-up

• Example 2: Consider the word ”smarter”

• Character tokens: s-m-a-r-t-e-r

• Subword tokens: smart-er

c© Martial Luyts 23

• As tokens are the building blocks of Natural Language, the most common way of
processing the raw text happens at the token level.

• Hence, Tokenization is the foremost step while modeling text data.

• A common next step is the preparation of a vocabulary, often based on the
obtained tokens in the corpus.

• Vocabulary refers to the set of unique tokens in the corpus.

• At character level, this vocabulary often consists of 26 elements, i.e., the
letters within the alphabet

c© Martial Luyts 24

• Unfortunately, even tokenization can be difficult

• Example: Consider ”John’s sick”

• Question: Is ”John’s sick” one token or two?

• Answer:

• If one ⇒ Problems in parsing (where’s the verb?)

• If two ⇒ What do we do with ”John’s house”?

• What to do with hypens (e.g., database vs. data-base vs data base)?

• What to do with ”C++”, ”A/C”, ”:-)”, ”...”?

• What to do with languages that don’t use whitespace (e.g., Chinese)?

c© Martial Luyts 25

• To avoid/reduce these problems, tockenization is often composed on different
rules, next to traditional strategies (e.g., specifying delimiters).

c© Martial Luyts 26

2.3 Filtering

• Filtering is usually done on text to remove some of the words.

• A common filtering is stop words removal.

• Stop words are words that frequently appear in the text without having much
content information (e.g., prepositions, conjunctions, etc.)

c© Martial Luyts 27

• Typically text contains about 400 to 500 of such words.

• For an application, an additional domain specific stopwords list may be
constructed.

• Question: But why should we remove stopwords?

c© Martial Luyts 28

• Answer:

• Reduce data set size (stopwords account for 20-30% of the total word count)

• Improve effectivity of text mining methods (stopwords may confuse the
mining algorithm)

c© Martial Luyts 29

2.4 Stemming & lemmatization

• In addition to tockenization, stemming & lemmatization are the most common
text pre-processing techniques in text mining.

• In both cases, these methods try to reduce a given word to its root word.

• In the stemming process, the root word is called a stem.

• In the lemmatization process, the root word is called a lemma.

• Question: But what is a root word?

c© Martial Luyts 30

• Answer:

• Languages such as English, Hindi consists of several words which are often
derived from one another.

• Inflected Language is a term used for a language that contains derived words

• Example: The word ”historical” is derived from the word ”history”.
Hence, it is a derived word.

• There is always a common root form for all inflected words.

c© Martial Luyts 31

• Depending on the language, the degree of inflection varies from lower to higher.

• Root form of these derived or inflected words are attained using stemming and
lemmatization.

Stemming

• It is the process of removing the last few characters of a given inflected word, to
obtain a shorter form, even if that form doesn’t have any meaning.

• Example:

c© Martial Luyts 32

• Can be achieved with rule-based algorithms, usually based on suffix-stripping

• Standard algorithm for English: the Porter stemmer

• Overview:

c© Martial Luyts 33

• Advantages: Simple & fast

• Disadvantages:

• Rules are language dependent;

• Can create words that do not exist in the language,
e.g., computers ⇒ comput;

• Often reduces different words to the same stem,
e.g., army, arm ⇒ arm, stocks, stocking ⇒ stock.

c© Martial Luyts 34

• Some basic stemming rules in English: Remove endings & transform words

• If a word ens with a consonant other than s, followed by an s, then delete s

• If a word ends in es, drop the s

• If a word ends in ing, delete the ing unless the remaining word consists only
of one letter or of th

• If a word ends with ies but not eies or aies, then ies -¿ y

• ...

c© Martial Luyts 35

Lemmatization:

• It is the process of deriving the linguistic correct root (called lemma) of a word,
i.e., base form of the verb, from one of its inflected forms. This requires the
morphological analysis of the words, i.e., grouping together the various inflected
forms of a word so they can be analyzed as a single item.

•Morphological analysis: A field of linguistics that studies the structure of
words. It identifies how a word is produced through the use of morphemes. A
morpheme is a basic unit of the English language. The morpheme is the
smallest element of a word that has grammatical function and meaning.

c© Martial Luyts 36

• Process:

• Understand the context

• Determine the Part-of-speech (POS) tagging of a word in a sentence
(see later)

• Find the lemma

• Example:

c© Martial Luyts 37

• Advantages:

• Identifies the lemma, which is an actual word;

• Less errors than in stemming.

• Disadvantages:

• More complex & slower than stemming

• Requires additional language-dependent resources

• While stemming is good enough for IR, TM often requires lemmatization
(semantics is more important in this setting)

• Remark: Its implementation is difficult because it is related to the semantics
and the POS of a sentence, e.g., go is lemma of goes, gone, going, went.

• Question: But what is Part-of-speech (POS) tagging?

c© Martial Luyts 38

Part-of-speech (POS) tagging:

• It determines the linguistic category of word (called tags or parts of speech), and
assigns a part of speech to each token.

• In English language, there are eight main tags (which are often collected in a
so-called tagset):

c© Martial Luyts 39

• noun: John, London, Table, Teacher, Pen, City, Happiness, Hope

• pronoun: I, We, They, You, He, She, It, Me, Us, Them, Him, Her, This

• adjective: Big, Happy, Green, Young, Fun, Crazy, Three

• verb: Read, Eat, Go, Speak, Run, Play, Live, Have, Like, Are, Is

• adverb: Slowly, Quietly, Very, Always, Never, Too, Well, Tomorrow

• preposition: At, On, In, From, With, Near, Between, About, Under

• conjunction: And, Or, But, Because, So, Yet, Unless, Since, If

• interjection: Ouch! Wow! Great! Help! Oh! Hey! Hi!

c© Martial Luyts 40

• Thus, POS tagging can be seen as a learning solution which aims to assign parts
of speech tag to each word of a given text based on its context and definition.

• Example:

c© Martial Luyts 41

• There are different approaches for POS tagging:

c© Martial Luyts 42

Supervised POS tagging:

• Requires a pre-tagged corpora which is used for training to learn about the
tagset, word-tag frequencies, rule sets, etc.

• The performance of these models generally increase with the increase in size
of this corpora

• Examples:

• Hidden Markov Models (HMM)

• Conditional Random Fields (CRF)/Maximum Entropy Markov Models
(MEMM)

• Neural sequence models, e.g., Recurrent Neural Networls (RNN) or
Transformers

• Large Language Models, e.g., BERT, finetuned

c© Martial Luyts 43

Unsupervised POS tagging:

• Do not require a pre-tagged corpora

• Instead, they use advanced computational methods like the Baum-Welch
algorithm to automatically induce tagsets, transformation rules, etc.

• In what follows, we will explain a few state-of-the-art techniques for POS
tagging, i.e., [2] Hidden Markov Model (HMM) with [3] Vitarbi
Algorithm, [4] Maximum Entropy Markov Model (MEMM) & [5]
Conditional Random Fields (CRFs) (all [1] stochastic taggers)

c© Martial Luyts 44

[1] Stochastic POS Tagging

• Any POS tagging model which somehow incorporates frequency or probability
may be properly labelled stochastic.

• This approach assumes that each word is known and has a finite set of possible
tags originating from a specific tagset.

• These tags can be drawn from a dictionary or a morphological analysis.

• There exists a lot of tagsets nowadays, for (almost) every language.

• Reference: sketchengine.eu/tagsets/

• Principle: When a word has more than one possible tag, statistical methods
enable us to determine the optimal sequence of POS tags T = t1, t2, ..., tn, given
a sequence of words W = w1, w2, ..., wn

c© Martial Luyts 45

• In statistical terms: Find the optimal POS tag sequence, denoted T̂ , by
maximizing the conditional probability P (T | W):

T̂ = argmaxt1,t2,...,tn P (t1, t2, ..., tn | w1, w2, ..., wn)︸ ︷︷ ︸
(?)

• To compute (?), we can:

• Use the chain rule of probability:

(?) = P (t1 | W)P (t2 | t1;W)P (t3 | t1, t2;W) . . . P (tn | t1:n−1;W)

=

n∏
k=1

P (tk | t1:k−1;W)

• Use Bayes’ theorem:

(?) =
P (T)P (W | T)

P (W)
∝ P (T)P (W | T)

c© Martial Luyts 46

• Problem: Statistics on sequences of any length are impossible to obtain

• Consider 5 POS tags in the selected tagset & 10 words in a sentence

• Number of probabilities to maximize from: 510 ≈ 10 million

• To overcome this problem, Viterbi’s algorithm can be used

Viterbi’s algorithm

• It is a dynamic programming algorithm for obtaining the maximum posteriori
probability estimate of the most likely sequence of hidden states (called the
Viterbi path) that results in a sequence of observed event.

• Said differently, Viterbi decoding efficiently determines the most probable
path from the exponentially many possibilities.

• We will discuss this algorithm within the HMM POS tagging framework (see
later).

c© Martial Luyts 47

• The simplest stochastic taggers disambiguate words based solely on the
probability that a word occurs with a particular tag. Said differently, the tag
encountered most frequently in the training set with the word is the one assigned
to an ambiguous instance of that word.

• Problem: While it may yield a valid tag for a given word, it can also yield
inadmissible sequences of tags.

• Alternatively to the word frequency approach is to calculate the probability of a
given sequence of tags occurring.

• This is often referred as the N-gram approach, i.e., the best tag (tk) for a
given word wk is deter-
mined by the probability that it occurs with the N previous tags (tk−1, tk−2, ...)

c© Martial Luyts 48

• Here, N can be choosen apriori (1, 2, 3, etc.)

• Note: A 1-gram tagger is another term for a unigram tagger; A 2-gram &
3-gram tagger are also called a bigram & trigram tagger

• This approach makes much more sense, since it considers the tags for
individual words based on context.

c© Martial Luyts 49

• In the bigram tagger, for example, the conditional probability of tag tk,
corresponding to word wk, is approximated as follows:

P (tk | t1:k−1;W) ≈ P (tk | tk−1;W)

⇒ (?) ≈
n∏
k=1

P (tk | tk−1;W)

• The assumption that the probability of word depends only on the previous
word is called a Markov assumption.

• In the general N-gram tagger, we have:

P (tk | t1:k−1;W) ≈ P (tk | tk−N+1;W)

⇒ (?) ≈
n∏
k=1

P (tk | tk−N+1;W)

c© Martial Luyts 50

• Question: But how do we estimate these N-gram probabilities?

• Answer: Maximum likelihood estimation

• Getting N-gram counts from a trained tagged corpus, i.e.,

C(tk−N+1:k−1tk | W)

• Normalize these counts so that they lie between 0 and 1, i.e.,

P (tk | tk−N+1;W) =
C(tk−N+1:k−1tk | W)∑
tC(tk−N+1:k−1t | W)

(??)
=

C(tk−N+1:k−1tk | W)

C(tk−N+1:k−1 | W)

(??) Since the sum of all N-gram counts that start with a given sequence
of tags tk−N+1:k−1 must be equal to the N-1-gram count for tk−N+1:k−1.

c© Martial Luyts 51

[2] Hidden Markov Model (HMM)

• To model any problem using a HMM, we need a set of observations and a set of
possible hidden states.

• In the POS tagging problem:

• Observations: Words in
the given sequence

• States: POS tags for the
words

c© Martial Luyts 52

• From this representation, we observe two kind of probabilities:

• Emission probability: Probability of making certain observations given a
particular state

• Transition probability: Probability of transitioning to another state given a
particular state

c© Martial Luyts 53

• These probabilities are derived from a trained tagged corpus.

Example:

• Consider the following tagged corpus, consisting of 4 sentences:

• Mary Jane can see Will

• Spot will see Mary

• Will Jane spot Mary?

• Mary will pat Spot

• Remark: For simplicity, only 3 POS are considered in this tagset, i.e., noun
(N), model (M) and verb (V).

c© Martial Luyts 54

Emission probabilities:

• To calculate the emission probabilities, we first create a frequency table (left),
based on the given tagged corpus, and divide each column by the total
number of their appearances (right), i.e., the emission probabilities:

Tags

Noun Model Verb

Mary 4 0 0

Jane 2 0 0

Will 1 3 0

Word Spot 2 0 1

Can 0 1 0

See 0 0 2

pat 0 0 1

Tags

Noun Model Verb

Mary 4/9 0 0

Jane 2/9 0 0

Will 1/9 3/4 0

Word Spot 2/9 0 1/4

Can 0 1/4 0

See 0 0 2/4

pat 0 0 1/4

c© Martial Luyts 55

Transition probabilities:

• To calculate the transition probabilities, we first create two more tags < S >
and < E >, i.e., to define the start and end of a sentence, respectively:

c© Martial Luyts 56

• We can now creating a co-occurence frequency table, based on the tagged
corpus:

Tags

Noun Model Verb < E >

< S > 3 1 0 0

Tags
Noun 1 3 1 4

Model 1 0 3 0

Verb 4 0 0 0

c© Martial Luyts 57

• The transition probabilities can now be derived by dividing each term of
the co-occurence frequency table by the total number of co-occurences of the
tag in consideration:

Tags

Noun Model Verb < E >

< S > 3/4 1/4 0 0

Tags
Noun 1/9 3/9 1/9 4/9

Model 1/4 0 3/4 0

Verb 4/4 0 0 0

c© Martial Luyts 58

• Question: Now that we have these probabilities, how does the HMM determine
the appropriate sequence of tags for a particular (new) sentence with n words?

• Reminder: We wish to find

T̂ = argmaxt1,t2,...,tn P (t1, t2, ..., tn | w1, w2, ..., wn)︸ ︷︷ ︸
(?)

where (?) ∝ P (T)P (W | T)︸ ︷︷ ︸
(∆)

• Answer: By using the Markov assumption, HMM will approximate (∆) with

Q =

n+1∏
k=1

P (tk | tk−1)︸ ︷︷ ︸
TRANSITIONS

(tk−1 → tk)

·
n∏
k=1

P (wk | tk)︸ ︷︷ ︸
EMISSIONS
(tk → wk)

c© Martial Luyts 59

Example: Take a new sentence ”Will can spot Mary”.

• Consider the following POS tagging for this sentence (obvious wrong): Will as a
model; Can as a verb; Spot as a noun; Mary as a noun.

• The probability Q of this sequence being correct equals:

⇒ Q = 1
4 ·

3
4 · 1 ·

1
9 ·

4
9 ·

3
4 · 0 ·

2
9 ·

4
9 = 0

c© Martial Luyts 60

• Also consider another POS tagging (obvious right): Will as a noun; Can as a
model; Spot as a verb; Mary as a noun.

• The probability Q of this sequence being correct now equals:

⇒ Q = 3
4 ·

3
9 ·

3
4 · 1 ·

4
9 ·

1
9 ·

1
4 ·

1
4 ·

4
9 = 0.00025720164

c© Martial Luyts 61

• By considering only 3 POS tags and a relative small new sentence (with only 4
words), 81 Q’s can be calculated, which seems achievable.

• When the task is to tag a larger sentence and all the POS tags in the Penn
Treebank project are taken into consideration (which is often preferred in
practice), the number of Q’s grows exponentially.

c© Martial Luyts 62

• To partly resolve this issue, we can delete all possible tags with 0 probability and
all paths which do not lead to the endpoint:

c© Martial Luyts 63

• As result, we reduced the 81 possible combinations to only 2 possible
combinations:

< S > → N → M → N → N → < E >:
Q = 3

4 ·
3
9 ·

1
4 ·

1
9 ·

4
9 ·

1
9 ·

1
4 ·

2
9 ·

4
9 = 0.00000846754

< S > → N → M → N → V → < E >:
Q = 3

4 ·
3
9 ·

3
4 · 1 ·

4
9 ·

1
9 ·

1
4 ·

1
4 ·

4
9 = 0.00025720164

• Alternative/additional to this approach, we can (further) optimize the HMM by
using the Viterbi algorithm, invented by Andrew James Viterbi.

c© Martial Luyts 64

[3] Vitarbi algorithm:

• Reconsider the obtained graph, where our focus is put on the encircled tag:

c© Martial Luyts 65

• There are 2 paths leading to this encircled tag (with corresponding Q-value in red):

c© Martial Luyts 66

• The Viterbi algorithm now selects the path with the highest probability, and
continuous with it.

• As we now already continued from a reduced number of consideration, we can
also apply the Viterbi algorithm at the start:

c© Martial Luyts 67

• The graph obtained after computing probabilities of all paths leading to a
specific outcome tag is shown below:

c© Martial Luyts 68

• To get an optimal path, we start from the end and trace backward:

• Remark: The algorithm returns only one path as compared to the previous
method which suggested two paths. Thus by using this algorithm, we saved us a
lot of computations.

c© Martial Luyts 69

Remarks on the HMM approach:

• The HMM approach belongs to the family of probabilistic graphical models in
machine learning.

• Since HMM models the joint probability of the sequence of words (W) and tags
(T), it is called a generative model, i.e., they attempt to recreate the original
generating process responsible for creating the label-word pairs.

• Remark: If you model on the conditional probability P (T | W), it is a
discriminative model.

• Question: But how can you see that the HMM is modeling the joint
probability P (T,W)?

c© Martial Luyts 70

• Answer: HMM tries to model (∆) = P (T)P (W | T), which correspond to
the joint probability P (T,W). By using Bayes’ rule, the conditional
probability can be obtained afterwards, and maximized.

• While the HMM is a useful and powerful model, it needs a number of
augmentations to achieve high accuracy.

Examples:

1. In POS tagging, we often run into unknown words in a sentence that are
not incorporated in the training corpus:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their
CEO Alan Mulally announced first quarter results.

c© Martial Luyts 71

In this sentence it is quite likely that the word Mulally has not been seen in
training data. Similarly, topping is a relatively infrequent word in English, and
may not have been seen in training.

Because of this, for any test sentence W that contains some word(s) that is
never seen in training data, it is easily verified that

P (T,W) = 0, ∀ T.

Thus, the HMM model will completely fail on the test sentence.

c© Martial Luyts 72

2. The structure of HMMs are limited in dependency structures.

For example, it would be more helpful if a decision about tag ti could directly
use information about previous and future known words in the sentence, e.g.,
wi+1, wi−1, wi−2 (in addition to wi), and previous tags, e.g., ti−1 and ti−2.

This model framework is often referred as Maximum Entropy Markov
Model (MEMM), i.e., a discriminative model.

c© Martial Luyts 73

[4] Maximum Entropy Markov Model (MEMM)

• Reminder: In HMMs, the optimal POS tag sequence T̂ is obtained by
maximizing P (T | W), based on the Bayes’ rule, in the following sense:

T̂ = argmaxTP (T | W) = argmaxTP (W | T)P (T)

≈ argmaxT

n+1∏
k=1

P (tk | tk−1) ·
n∏
k=1

P (wk | tk)

• In a MEMM, by contrast, we compute the conditional probability P (T | W)
directly, training it to discriminate among the possible tag sequences, e.g.:

T̂ = argmaxTP (T | W)

≈ argmaxT

n∏
k=1

P (tk | wk, tk−1)

c© Martial Luyts 74

• Said differently, HMMs (top) compute the likelihood, i.e., observation word
conditioned on tags, while MEMMs (below) compute the posterior distribution,
i.e., tags conditioned on observation words:

c© Martial Luyts 75

• Of course, we don’t build MEMMs that condition just on wk and tk−1.

• A basic MEMM POS tagging for tag ti conditions on the observation word itself
(wi), neighboring words (e.g., wi−2, wi−1, wi+1), and previous tags (e.g., ti−2,
ti−1), and various combinations, using so-called feature templates like the
following:

< ti, wi−2 >,< ti, wi−1 >,< ti, wi >,< ti, wi+1 >,< ti, wi+2 >,

< ti, ti−1 >,< ti, ti−2, ti−1 >,< ti, ti−1, wi >,< ti, wi−1, wi >,< ti, wi, wi+1 > .

c© Martial Luyts 76

• In total, we have J = 10 features here, i.e.,

• j = 1: < ti, wi−2 >;

• j = 2: < ti, wi−1 >;

• j = 3: < ti, wi >;

• j = 4: < ti, wi+1 >;

• j = 5: < ti, wi+2 >;

• j = 6: < ti, ti−1 >;

• j = 7: < ti, ti−2, ti−1 >;

• j = 8: < ti, ti−1, wi >;

• j = 9: < ti, wi−1, wi >;

• j = 10: < ti, wi, wi+1 >;

• This, of course, can be extended/changed with other new features, depending
on your own choice.

• Question: But how will the optimal tag sequence T̂ then be calculated in this
MEMM formulation, hereby taken into account the different pre-defined features?

c© Martial Luyts 77

• Answer: The most likely sequence of tags T̂ is computed by combining these
features of the input word wi, its neighbors within l words wi+l

i−l, and the previous

v tags ti−vi−1 as follows:

T̂ = argmaxTP (T | W)

≈ argmaxT

n∏
i=1

P (ti | wi, wi+l
i−l, t

i−v
i−1)︸ ︷︷ ︸

(Γ)

≈ argmaxT

n∏
i=1

exp
(∑J

j=1 θjfj(ti, wi, w
i+l
i−l, t

i−v
i−1)
)

∑
t′∈Q exp

(∑J
j=1 θjfj(t

′, wi, w
i+l
i−l, t

i−v
i−1)
)

• Q represents the tagset;

• θj is the weight corresponding to the so-called feature function fj(·).

c© Martial Luyts 78

• As can be seen from the expression, the conditional probability (Γ) is derived by
a softmax function.

• In neural networks, for example, this function is often used as last activation
function, since it normalizes the output of a network to a probability
distribution.

• Within this softmax function, we are using specific weights {θj | j = 1, . . . , J}
corresponding to so-called feature functions {fj(·) | j = 1, . . . , J}.

• Question: But what are these feature functions?

c© Martial Luyts 79

• Answer:

• Functions that take account of the pre-defined features

• Often, these are formulated as indicator functions.

Our example:

c© Martial Luyts 80

f1(ti, wi, w
i+l
i−l, t

i−v
i−1) =

1 if ti = V B & wi−2 = Janet

0 otherwise

f2(ti, wi, w
i+l
i−l, t

i−v
i−1) =

1 if ti = V B & wi−1 = will

0 otherwise

f3(ti, wi, w
i+l
i−l, t

i−v
i−1) =

1 if ti = V B & wi = back

0 otherwise
...

f10(ti, wi, w
i+l
i−l, t

i−v
i−1) =

1 if ti = V B & wi = back & wi+1 = the

0 otherwise

• Question: And what are these weights?

c© Martial Luyts 81

• Answer:

• The weight θj for a feature function fj(·) captures how closely feature j is
related to the given tag ti.

• Question: How can we find these weights?

• Answer: In the training process, i.e., where all words and corresponding tags
are known, Θ = {θj | j = 1, ..., J} is randomly initialized and optimized
during training through gradient descent by minimizing a specific
loss/cost function.

c© Martial Luyts 82

Example:

• Consider the log-likelihood function l(Θ), expressed as

l(Θ) =
∑
i

log
[
P (ti | wi, wi+l

i−l, t
i−v
i−1; Θ)

]
,

and assume −l(Θ) as loss/cost function.

•Maximize l(Θ): Maximum-likelihood estimate (MLE)

Θ̂ = argmaxΘ

∑
i

log
[
P (ti | wi, wi+l

i−l, t
i−v
i−1; θj)

]
≡ argminΘ

−∑
i

log

P (ti | wi, wi+l
i−l, t

i−v
i−1︸ ︷︷ ︸

Fi

; θj)


• Remark: Maximizing l(Θ) ≡ minimizing −l(Θ)

c© Martial Luyts 83

• To minimize −l(Θ), gradient descent can be used:

1. First, initialize Θ to some random values Θ̂(0) =
{
θ̂

(0)
j | j = 1, ..., J

}
;

2. Then iterate through each input and each iteration you update the
weight by finding the derivative of −l(Θ) with respect to θj:

∂ [−l(Θ)]

∂θj
= −

∑
i

fj(ti, Fi)

+
∑
i

∑
t′∈Q

exp
(∑J

j=1 θjfj(t
′, Fi)

)
∑

t′∈Q exp
(∑J

j=1 θjfj(t
′, Fi)

)fj(t′, Fi)

c© Martial Luyts 84

3. Update θ̂j as below, and repeat it until converge:

θ̂
(s)
j = θ̂

(s−1)
j + α

∂

∂θj

[
−l(θ(s−1))

]
.

Here,

• α is the learning rate that determine how much to offset;

• θ̂(s)
j is the estimated weight θ̂j at current time step s in the iteration

and s− 1 is the previous step.

So at each iteration, we move the estimate weights to some distance α
in the direction of the gradient.

c© Martial Luyts 85

c© Martial Luyts 86

Remarks on the MEMM approach:

• To partially solve the problem of unknown words in a new sentence (which was a
drawbrack in HMM), additional features are often incorporated that help with
unknown words, such as:

•Word shape features

• It represent the abstract letter pattern of the word by mapping lower-case
letters to ’x’, upper-case to ’X’, numbers to ’d’, and retaining punctuation.

• Example: DC10-30 → XXdd-dd

• Shorter word shape features

• In these features, consecutive character types are removed, so words in all
caps map to X, words with initial-caps map to Xx.

• Example: DC10-30 → Xd-d

• Prefix & suffix features

c© Martial Luyts 87

Example: The word ”well-dressed” might generate the following non-zero
valued feature values:

prefix = w
prefix = we
suffix = ed
suffix = d

word-shape = xxxx-xxxxxxx
short-word-shape = x-x

These features can be computed for every word seen in the training.

To avoid that you have an enormous amount of features, that are still
informative, a feature cutoff is generally used in which features are thrown out
if they have count < 5 in the training set.

c© Martial Luyts 88

• Similar to HMM, the MEMM approach can be seen as a directed approach,
as it exclusively run left-to-right.

• Limitation: A decision about word wi could not directly use information
about future tags ti+1 and ti+2.

c© Martial Luyts 89

[5] Conditional Random Fields (CRFs)

• Reminder: In MEMMs, the optimal POS tag sequence T̂ is obtained by
maximizing P (T | W) in the following sense:

T̂ = argmaxTP (T | W)

≈ argmaxT

n∏
i=1

P (ti | wi, wi+l
i−l, t

i−v
i−1)︸ ︷︷ ︸

(Γ)

≈ argmaxT

n∏
i=1

exp
(∑J

j=1 θjfj(ti, wi, w
i+l
i−l, t

i−v
i−1)
)

∑
t′∈Q exp

(∑J
j=1 θjfj(t

′, wi, w
i+l
i−l, t

i−v
i−1)
)

• In a CRF, the conditional probability P (T | W) is also computed directly, but
not by computing a probability for each tag at each time.

c© Martial Luyts 90

• Instead, at each time step the CRF computes log-linear functions over a set of
relevant (local) features, and these local features are aggregated and normalized
to produce a global probability for the whole sequence.

• More formally, the optimal POS tag sequence T̂ in a CRF is obtained by
maximizing P (T | W) in the following sense:

T̂ = argmaxTP (T | W)

≈ argmaxT

exp
(∑K

k=1 θkFk(W,T)
)

∑
T ′∈Υ exp

(∑K
k=1 θkFk(W,T

′)
)

• Υ represent all possible tag sequences;

• θk is the weight corresponding to the so-called global feature function Fk(·).

• Question: What are those global feature functions Fk(·)?

c© Martial Luyts 91

• Answer:

• In a CRF, the function Fk(W,T) maps an entire word sequence W and an
entire tag sequence T to a feature vector

• Note: Therefore, the set of Fk(W,T) are called global features since each
one is a property of the entire word sequence W and tag sequence T .

• We compute them by decomposing into a sum of local features for each
position i in T :

Fk(W,T) =

n∑
i

fk(ti−1, ti,W, i).

• Here, we choose that each local features fk only depend on the current
and previous tags ti and ti−1, also known as the so-called linear-chain CRF.

• A general CRF allows a feature to make use of any tags, and are thus
necessary for tasks in which the decision depend on distant tags, like ti−4.

c© Martial Luyts 92

Remarks on the CRF approach:

• Similar to MEMM, CRF is a discriminative model.

• While HMM and MEMM can be seen as a directed graph, the (linear-chain)
CRF can be expressed as an undirected graph.

c© Martial Luyts 93

• CRF calculates the normalizing probability in the global scope, rather than in the
local scope as is the case with MEMM.

• Hence, it is an optimal global solution and overcomes the labeling bias issue in
MEMMs.

• General CRFs require more complex inference, and are therefore less commonly
used for language processing.

c© Martial Luyts 94

2.5 Syntax: Chunking & parsing

• We can now start a syntactic analysis of a sentence, i.e., the analysis that focuses
on understanding the logical meaning of sentences or of parts of sentences

• In other words, syntactic analysis analyzes the relationship between words and
the grammatical structure of sentences.

• This can be done by using two methods:

• Full parsing: Produce a full parse tree for a sentence using a parser, a
grammar, and a lexicon;

• Chunking (also called partial, shallow or robust parsing): Find
syntactic consituents (chunks) like Noun Phrases (NPs) or
Verb Phrases (VPs) within a sentence.

• Chunks: Non-overlapping regions of text

c© Martial Luyts 95

Example:

c© Martial Luyts 96

c© Martial Luyts 97

• Remark: Producing a full parse tree often fails due to

• grammatical inaccuracies;

• novel words;

• bad tockenization;

• wrong sentence splits;

• errors in POS tagging;

• etc.

Hence, chunking are more commonly used in practice.

• Question: But what can we do with chunks?

c© Martial Luyts 98

• Answer: Chunking is very important when you want to extract information
from text such as person names, locations, organisations, dates, etc.

• In text mining, this is called Named Entity Recognition (NER).

• In what follows, a brief overview is given on NER.

c© Martial Luyts 99

Named Entity Recognition (NER)

• NER (also known as entity chunking, extraction or identification) is a subtask of
information extraction.

• It seeks to identify and classify key information (entities) mentioned in text into
pre-defined categories such as person names, organizations, locations,
percentages, time expressions, etc.

c© Martial Luyts 100

• To achieve NER, two steps are standardly performed:

1. Detect a named entity, i.e., a single word (chink) or string of words
(chunk);

2. Categorize the entity, e.g., as a person name, organisation, etc.

Example: Consider the sentence

”Jim bought 300 shares of Acme Corp. in 2006”

↓
[Jim] bought 300 shares of [Acme Corp.] in [2006]

↓
[Jim]PERSON bought 300 shares of [Acme Corp.]ORG. in [2006]TIME

c© Martial Luyts 101

• Question: What is the difference between POS tagging and NER?

• Answer:

• In POS tagging, each POS tag is attached to a single word, while NER tags
can be attached to multiple words.

• Thus NER involves not only detecting the type of named entity, but also the
named entity boundaries. Therefore, NER is often seen as a more difficult
task to perform compared to POS tagging.

• Generally, NER uses certain POS tags as an input feature.

• Question: But what POS tags are standard used that accounts for (1) the
different named entity categories and (2) the named entity boundaries?

c© Martial Luyts 102

• Answer: Inside-outside-beginning (IOB) tagging

• It is a tagging format that is used for tagging tokens in a chunking task such
as NER;

• These tags are similar to POS tags but give us information about the location
of the word in the chunk;

• The IOB tagging system contains tags of the form:

• B-{CHUNK TYPE} - for the word in the Beginning chunk;

• I-{CHUNK TYPE} - for the word Inside the chunk;

• O - Outside any chunk.

c© Martial Luyts 103

c© Martial Luyts 104

• There, of course, exists other annotation schemes, e.g.,

• IO: The simplest scheme. In this scheme, each token from the dataset is
assigned one of two tags: An inside tag (I) and an outside tag (O). The I tag
is for named entities, whereas the O tag is for normal words. This scheme has
a limitation, as it cannot correctly encode consecutive entities of the same
type.

• IOE: This scheme works nearly identically to IOB, but it indicates the end of
the entity (E tag) instead of its beginning.

• IOBES: An alternative to the IOB scheme is IOBES, which increases the
amount of related to the boundaries of named entities. In addition to tagging
words at the beginning (B), inside (I), end (E), and outside (O) of a named
entity. It also labels single-token entities with tag S.

c© Martial Luyts 105

• BI: This scheme tags entities in a similar method to IOB. Additionally, it
labels the beginning of non-entity words with the tag B-O and the rest as I-O.

• IE: This scheme works exactly like IOE with the distinction that it labels the
end of non-entity words with the tag E-O and the rest as I-O.

• BIES: This scheme encodes the entities similar to IOBES. In addition, it also
encodes the non-entity words using the same method. It uses B-O to tag the
beginning of non-entity words, I-O to tag the inside of non-entity words, and
S-O for single non-entity tokens that exist between two entities.

c© Martial Luyts 106

• NER can be done using rule-based methods alongside a number of
sequence labelling methods, e.g.,

• Stochastic: Linear-chain CRF & MEMM

• Neural: Bidirectional Long Short Term Memory (Bi-LSTM)
networks, i.e., a special kind of Recurrent Neural Network (RNN, a
deep learning technique), capable of learning long-term dependencies.

• See later.

c© Martial Luyts 107

• Remark: A CRF for NER makes use of very similar features to a POS tagger,
e.g.,

• One feature that is especially useful for locations is a gazetteer, i.e., a list of
place names, often providing millions of entries for locations with detailed
geographical and political informations. This can be implemented as a binary
feature indicating a phrase appears in the list.

c© Martial Luyts 108

Example:

• Question: And how can we evaluate these NER systems?

c© Martial Luyts 109

• Traditional answer: Evaluation metrics

• For evaluation, custom NER uses the following metrics:

• Precision:

Precision =
#True Positives

#True Positives + #False Positives
;

• Recall:

Recall =
#True Positives

#True Positives + #False Negatives
;

• F1 score:

F1 score =
2 · Precision · Recall

Precision + Recall
;

• These can be calculated for each entity separately, i.e., entity-level
evaluation, or for the model collectively, i.e., model-level evaluation.

c© Martial Luyts 110

Example: Consider the sentence

”The first party of this contract is John Smith, resident of 5678 Main Rd., City
of Frederick, state of Nebraska. And the second party is Forrest Ray, resident of
123-345 Integer Rd., City of Corona, state of New Mexico. There is also Fannie
Thomas resident of 7890 River Road, city of Colorado Springs, State of
Colorado.”

The model extracting entities from this text could have the following predictions:

c© Martial Luyts 111

• Entity-level evaluation for the person entity:

• Precision = 2
(2+1) = 0.67

• Recall = 2
(2+1) = 0.67

• F1 score = (2·0.67·0.67)
(0.67+0.67) = 0.67

c© Martial Luyts 112

• Entity-level evaluation for the city entity:

• Precision = 1
(1+1) = 0.5

• Recall = 1
(1+1) = 0.5

• F1 score = (2·0.5·0.5)
(0.5+0.5) = 0.5

c© Martial Luyts 113

•Model-level evaluation for the collective model

• Precision = 3
(3+2) = 0.6

• Recall = 3
(3+2) = 0.6

• F1 score = (2·0.6·0.6)
(0.6+0.6) = 0.6

c© Martial Luyts 114

• Interpretation of these metrics:

c© Martial Luyts 115

• Remark: These metrics don’t tell you anything about the strengths &
weaknesses of the model and what characteristics of the data are most
influential on the model performance, e.g. is the model suffering due to

• long sentence length?

• too many (or too few) entities?

• too highly ambiguous entities?

Therefore, alternative/additional novel evaluation techniques have been
proposed in the literature, e.g., (?), that tackles some of these questions

• (?) Fu, J., Liu, P., and Neubig, G. (2020). Interpretable Multi-dataset
Evaluation for Named Entity Recognition. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 6058–6069, Online. Association for Computational Linguistics.

c© Martial Luyts 116

2.6 Semantics

• Now that we have synthatic information, we can start to address the meaning of
words;

• A useful tool to address this: WordNet

c© Martial Luyts 117

•WordNet is a large lexical database of English.

• Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept;

• Synsets are interlinked by means of conceptual-semantic and lexical relations;

c© Martial Luyts 118

• It superficially resembles a thesaurus, in that groups words together based on
their meaning;

• However, there are some important distinctions:

• WordNet interlinks not just word forms - strings of letters - but specific
senses of words. As a result, words that are found in close proximity to one
another in the network are semantically disambiguated;

• WordNet labels the semantic relations among words, whereas the
groupings of words in a thesaurus does not follow any explicit pattern
other than meaning similarity;

• It is freely and publicly available:
http : //wordnetweb.princeton.edu/perl/webwn

c© Martial Luyts 119

3. Attribute Generation

• Since traditional machine learning and data mining techniques are generally not
designed to deal directly with textual data, attribute generation (also known as
feature construction or engineering) is an important preliminary step in text
mining;

• Feature construction in text mining consists of various techniques and
approaches which convert textual data into a feature-based representation;

• The choice hereby depends on

• the task that is being addressed;

• the data mining algorithms used;

• the nature of the dataset in question.

c© Martial Luyts 120

• Examples:

• When your task/algorithm requires you to work with the structure of the
language, the use of grammatical features like POS tagging, NER and
parsing can be used;

• When you have a large corpus and want to simplify them into fewer words for
your algorithm, statistical features like TF-IDF can be considered;

• When your algorithm require to work with the semantics of the language, i.e.,
the study of the meaning of words, phrases and sentences, vectorized
embeddings like word2vec can be used.

c© Martial Luyts 121

• In what follows, we will focus on the latter two, i.e., statistical features &
vectorized embeddings, in the context of word semantics.

c© Martial Luyts 122

3.1 One-hot encoding

• One-hot encoding = Represent every word of your document as a R|V |x1

vector with all 0s and one 1 at the index of that word in the sorted language;

• In this notation, | V | presents the size of the vocabulary V

• Reminder: Vocabulary = a total number of distinct words which form your
corpus

• Word vectors in this type of encoding would appear as the following:

c© Martial Luyts 123

• As result, each word is represented as a completely independent entity, and the
list of words in a sentence can be denoted as an array of vectors or a matrix.

• Advantages:

• Highly intuitive and straightforward to compute;

• Can be used as input layer within deep learning techniques like Neural
Networks

c© Martial Luyts 124

• Disadvantages:

• High-dimensional and sparse representations

• No fixed size (each document is of different length which creates an array of
vectors of different sizes)

• Does not capture semantics, in sense that it does not give any notion of
similarity, e.g.,

(whotel)Twmotel = (whotel)Twcat = 0

c© Martial Luyts 125

3.2 Bag of Words

• Bag of Words (BoW) = Representation of text that describes the occurrence
of words within a document;

• It involves two aspects:

• A vocabulary of known words

• A measure of the presence of known words, e.g., counts

c© Martial Luyts 126

• Example: Consider the following lines of text from the book ”A Tale of Two
Cities” by Charles Dickens:

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness.

For this small example, let’s treat each line as a separate ”document” and the 4
lines as our entire corpus of documents.

c© Martial Luyts 127

Step 1: Design the vocabulary

The unique words here (ignoring case and punctuation) are:

• ”it”

• ”was”

• ”the”

• ”best”

• ”of”

• ”times”

• ”worst”

• ”age”

• ”wisdom”

• ”foolishness”

⇒ Vocabulary of 10 words from a corpus containing 24 words.

c© Martial Luyts 128

Step 2: Create document vectors

The next step is to score the words in each document. Because | V |= 10, a
fixed-length document representation of 10 can be used, with one position in the
vector to score each word. The simplest scoring method is to mark the presence
of words as a boolean value, i.e., 1 for present and 0 for absent.

The scoring of document 1 (”It was the best of times”) would look as follows:

• ”it” = 1

• ”was” = 1

• ”the” = 1

• ”best” = 1

• ”of” = 1

• ”times” = 1

• ”worst” = 0

• ”age” = 0

• ”wisdom” = 0

• ”foolishness” = 0

c© Martial Luyts 129

Some additional simple scoring methods include:

• Frequencies: Calculate the frequency that each words appears in a
document out of all words in the document.

• Counts: Count the number of times each word appears in a document;
↘

This can be stored in a so-called Word-Document Matrix:

Document

D1 D2 . . . DN

Vocabulary V

v1 n1,1 n1,2 . . . n1,N

v2 n2,1 n2,2 . . . n2,N

...

v|V | n|V |,1 n|V |,2 . . . n|V |,N

c© Martial Luyts 130

• Advantages:

• Simple and intuitive;

• Fix size vector

• Disadvantages:

• Out of vocabulary situation, i.e., (new) words in a new sentence that are not
present in the predefined vocabulary are simply ignored;

∗ Possibility for sparsity, e.g., when having a large vocabulary and few repeated
words;

∗ Difficult to estimate the semantics of the document.

→ Possible solution for (∗): A vocabulary of grouped words, i.e., N-grams

c© Martial Luyts 131

3.3 Term Frequency - Inverse Document
Frequency

• A problem with scoring word frequency is that highly frequent words start to
dominate in the document, but may not contain as much ”informational
content” as rarer but perhaps more domain specific words

c© Martial Luyts 132

• Solution: Term Frequency - Inverse Document Frequency (TF-IDF)

• Idea: Rescale the frequency of words by how often they appear in all
documents, such that the scores for frequent words like ”the” (that are also
frequent across all documents) are penalized;

• TF-IDF rescales these frequencies by assigning weights to the words based
on two aspects:

• Term Frequency (TF): A scoring of the frequency of the word in the
current document;

• Inverse Document Frequency (IDF): A scoring of how rare the word
is across documents

c© Martial Luyts 133

• The TF-IDF weightage of a word in the document is calculated as the
product of TF and IDF of that word:

wi,j = tfi,j︸︷︷︸
TF

· log

(
N

dfi

)
︸ ︷︷ ︸

IDF

,

where:

• tfi,j = number of times a specific word vi appeared in document Dj, i.e.,
ni,j, divided by the total number of words (say Kj) in document Dj:

tfi,j =
ni,j∑Kj

k=1 nk,j
.

• N = total number of documents;

• dfi = number of documents containing word vi.

c© Martial Luyts 134

• Interpretation: The IDF of a rare term is high, whereas the IDF of a
frequent term is likely to be low.

• Our example:

(Document 1) It was the best of times,

(Document 2) it was the worst of times,

(Document 3) it was the age of wisdom,

(Document 4) it was the age of foolishness.

c© Martial Luyts 135

• Step 1: Word-Document MatrixT

Vocabulary

it was the best of times worst age wisdom foolishness

Document

1 1 1 1 1 1 1 0 0 0 0

2 1 1 1 0 1 1 1 0 0 0

3 1 1 1 0 1 0 0 1 1 0

4 1 1 1 0 1 0 0 1 0 1

c© Martial Luyts 136

• Step 2: Find TF

Vocabulary

it was the best of times worst age wisdom foolishness

TF Doc.

1 0.16 0.16 0.16 0.16 0.16 0.16 0 0 0 0

2 0.16 0.16 0.16 0 0.16 0.16 0.16 0 0 0

3 0.16 0.16 0.16 0 0.16 0 0 0.16 0.16 0

4 0.16 0.16 0.16 0 0.16 0 0 0.16 0 0.16

• Step 3: Find IDF

Vocabulary

it was the best of times worst age wisdom foolishness

IDF 0 0 0 log(4) 0 log(2) log(4) log(2) log(4) log(4)

c© Martial Luyts 137

• Step 4: TF-IDF

Vocabulary

it was the best of times worst age wisdom foolishness

TF-IDF Doc.

1 0 0 0 0.10 0 0.05 0 0 0 0

2 0 0 0 0 0 0.05 0.10 0 0 0

3 0 0 0 0 0 0 0 0.05 0.10 0

4 0 0 0 0 0 0 0 0.05 0 0.10

c© Martial Luyts 138

• Advantages:

• Simple and computational inexpensive to calculate;

• Simple starting point for similarity calculations, like cosine similarity

• Disadvantages:

• Memory-inefficiency (TF-IDF can suffer from the curse of dimensionality);

• Does not capture position in text, semantics, co-occurrences in different
documents.

c© Martial Luyts 139

3.4 Pointwise Mutual Information

• While TF-IDF can be used to address the importance of words in documents,
hereby penalizing too frequent unimportant words, the co-occurrence of
words across documents still remains unaddressed;

• To account for the co-occurrences of words in different documents, a
Word-Word Co-occurrence Matrix can be considered;

• Our example:

(Document 1) It was the best of times,

(Document 2) it was the worst of times,

(Document 3) it was the age of wisdom,

(Document 4) it was the age of foolishness.

c© Martial Luyts 140

Vocabulary

it was the best of times worst age wisdom foolishness

Vocabulary

it 0 4 0 0 0 0 0 0 0 0

was 4 0 4 0 0 0 0 0 0 0

the 0 4 0 1 0 0 1 2 0 0

best 0 0 1 0 1 0 0 0 0 0

of 0 0 0 1 0 2 0 0 1 1

times 0 0 0 0 2 0 0 0 0 0

worst 0 0 1 0 0 0 0 0 0 0

age 0 0 2 0 0 0 0 0 0 0

wisdom 0 0 0 0 1 0 0 0 0 0

foolishness 0 0 0 0 1 0 0 0 0 0

c© Martial Luyts 141

• Oftentimes, two extra characters, i.e., < S > and < E >, are added to this
matrix, to address the start and end of a sentence, respectively.

E.g., < S > - it: 4; < S > - wisdom: 0; times - < E >: 2

• Question: But how can we measure semantic similarity between words?

• First (Naive) Answer: Word-Word Co-occurrence Matrix

• This, however, is not the best measure of similarity between 2 words since it is
based on raw frequency, and hence is very skewed

• Our example: ”it” and ”is” are very frequent, but maybe not the most
discriminative

c© Martial Luyts 142

• We’d rather have a quantity which measures how much likely is it for 2 words to
occur in a window, compared with pure chance.

• Second Answer: Pointwise Mutual Information (PPMI)?

• Pointwise Mutual Information (PMI) = one of the most important
concepts in NLP;

• It measures of how often a target word w and a context word c occur,
compared with what you would expect if they were independent:

PMI(w, c) = ln

[
P (w, c)

P (w) · P (c)

]
.

• P (w, c) tells us how often we observed the two words together;

• P (w) · P (c) tells us how often we would expect the two words to co-occur
assuming they each occurred independently.

c© Martial Luyts 143

• Characteristics:

• PMI is symmetric, i.e., PMI(w, c) = PMI(c, w);

• Due to Bayes’ theorem:

PMI(w, c) = ln

[
P (w | c)
P (w)

]
= ln

[
P (c | w)

P (c)

]
.

• Range of PMI:−∞; min {−ln [P (w)] ;−ln [P (c)]}︸ ︷︷ ︸
(?)


(?) PMI maximizes when w and x are perfectly associated, i.e.,
P (w | c) = P (c | w) = 1.

c© Martial Luyts 144

• PMI follows the chain rule, i.e.,

PMI(w, cb) = PMI(w, c) + PMI(w, b | c).
Proof:

PMI(w, c) + PMI(w, b | c) = ln

[
P (w, c)

P (w) · P (c)

]
+ ln

[
P (w, b | c)

P (w | c) · P (b | c)

]
= ln

[
P (w, c)

P (w) · P (c)
· P (w, b | c)
P (w | c) · P (b | c)

]
= ln

[
P (w | c) · P (c) · P (w, b | c)

P (w) · P (c) · P (w | c) · P (b | c)

]
= ln

[
P (w, cb)

P (w) · P (cb)

]
= PMI(w, cb)

c© Martial Luyts 145

•Main limitations:

• PMI can take both positive and negative values, and has no fixed bounds,
which makes it harder to interpret;

• PMI has the problem of being bias toward infrequent event, i.e., very rare
words tend to have very high PMI values, but in applications such as
measuring the word similarity, it is preferable to have ”a higher score to
pairs whose relatedness is supported by more evidence”.

• To address these, several variations have been proposed, i.e., [1] Positive
PMI (PPMI), [2] Normalize PMI (NPMI), & [3] PMIk family;

• In what follows, we will discuss these!

c© Martial Luyts 146

[1] Positive PMI (PPMI):

• The Positive PMI (PPMI) measure is defined by setting negative values of
PMI to zero, i.e.,

PPMI(w, c) = max

{
ln

[
P (w, c)

P (w) · P (c)

]
; 0

}
.

•Motivation:

1. Negative PMI values (implying words are co-occurring less often than we
would expect by chance) tend to be unreliable unless our corpora are
”enormous”;

c© Martial Luyts 147

2. It’s not clear whether it’s even possible to evaluate such scores of
”unrelatedness” with human judgments;

3. It avoids to deal with −∞ values for events that never occur together.

[2] Normalize PMI (NPMI)

• PMI can be normalized between [−1; 1] resulting in −1 for never occurring
together, 0 for independence, and +1 for complete co-occurrence, resulting in
the so-called Normalize PMI (NPMI):

NPMI(w, c) =
PMI(w, c)

−ln[P (w, c)]
.

c© Martial Luyts 148

[3] PMIk family

• To account for the PMI problem of being bias toward infrequent events, the
PMIk measure (for k = 2, 3, . . .) can be used:

PMIk(w, c) = ln

[
P (w, c)k

P (w) · P (c)

]
.

•Motivation: The additional factors of P (w, c) inside the logarithm are
intended to correct the bias of PMI toward low-frequency events, by boosting the
scores of frequent pairs, e.g., Role and Nadif (2011) Handling the impact of low
frequency events on co-occurrence-based measures of word similarity: A case
study of Pointwise Mutual Information.

c© Martial Luyts 149

3.5 Word embeddings

• In the previous sections, e.g., Section 3.1, words are represented as sparse, long
vectors with dimensions corresponding to words in the vocabulary of documents
in a collection;

• To overcome the problem of high-dimensionality and sparse word representations,
a more powerful representation can be considered, i.e., embeddings, short
dense vectors.

c© Martial Luyts 150

• Embeddings translates sparse vectors into a low-dimensional space that
preserves semantic relationships.

•Word embeddings is a type of word representation that allows words with
similar meaning to have a similar representation.

c© Martial Luyts 151

• There exists two kinds of embeddings:

• Static embeddings = One fixed embedding for each word in the
vocabulary, with size Q (Q <<| V |);

• Contextual embeddings = The vector for each word is different in
different contexts.

c© Martial Luyts 152

• In this course, the Word2Vec (static) embeddings will be explored in detail,
including two methods for learning representations of words:

• Continuous Bag-of-Words (CBOW) model:

• Predicts the middle word wt based on surrounding context words wt−n,
. . . , wt−1, wt+1, . . . , wt+n;

• The context consists of a few words before and after the current (middle)
word, specified by a so-called context window size n;

• This architecture is called a bag-of-words model as the order of words in
the context is not essential.

• Skip-gram model: Predicts words within a certain range before and after
the current word in the same sentence.

c© Martial Luyts 153

c© Martial Luyts 154

1) Continuous Bag-of-Words (CBOW) model

• CBOW is a neural network(NN)-based algorithm;

• Architecture of the NN:

c© Martial Luyts 155

We breakdown the way this model works in steps:

1. The context words (wt−n, . . . , wt−1, wt+1, . . . , wt+n) for context window
size n are first encoded as one-hot word vectors (xt−n, . . . , xt−1, xt+1, . . . ,
xt+n), i.e., xt−j represent a R|V |x1 vector (∀j = 1, . . . , n);

2. The one-hot encoding vectors are passed as an input to an embedding layer
(initialized with some random weights), to obtain our embedded word vectors
for the context words:

• ut−n = W (1) x xt−n

• . . .

• ut−1 = W (1) x xt−1

• ut+1 = W (1) x xt+1

• . . .

• ut+n = W (1) x xt+n

Here, W (1) represent a Q x | V | ”weight” matrix, which we will be
optimized during training;

c© Martial Luyts 156

3. The word embeddings are then passed to a lambda layer where we average
out the word embeddings, i.e.,

h =
ut−n + · · · + ut−1 + ut+1 + · · · + ut−n

2n
.

Evidently, h denotes a RQx1 vector.

4. Next, a score vector is computed, to ensure that the output will be a R|V |x1

vector:

z = W (2) x h.

Here, W (2) represent a second R|V |xQ ”weight” matrix, which we again
(together with W (1)) will optimize during training;

c© Martial Luyts 157

5. To ensure that we have an output with probabilities, these scores are passed
to a dense SoftMax layer as follows: ŷ = softmax(z);

6. Goal: ŷ = xt, i.e., the one-hot word vector of target word wt

• We can extract out the embeddings of the needed words from our embedding
layer, once the training of W (1) and W (2) is completed.

• Question: How do we train W (1) and W (2) such that the goal above is reached?

c© Martial Luyts 158

• Answer: Minimize a specific loss/cost function through gradient descent

Example:

• Consider the cross entropy H(ŷ, xt) as loss/cost function, expressed as

H(ŷ, xt) = −
|V |∑
j=1

xtj · log(ŷj) = −xti · log(ŷi),

where i is the index where the correct word’s one-hot vector is 1.

Interpretation:

• For a perfect prediction (i.e., ŷi = 1)

→ H(ŷ, xt) = −1 · log(1) = 0

c© Martial Luyts 159

• For a very bad prediction (e.g., ŷi = 0.01)

→ H(ŷ, xt) = −1 · log(0.011) ≈ 4.605

• Thus, the objective is to minimize this loss function, in order to optimize
W = (W (1);W (2)):

Ŵ = argminW
{
−log

[
P (wi | wi−n, . . . , wi−1, wi+1, . . . , wi+n)

]}
= argminW

{
−log

[
exp(W i(2)h)∑|V |
j=1 exp(W

i(2)
j h)

]}

= argminW

−W i(2)h + log

 |V |∑
j=1

exp(W
i(2)
j h)


• To minimize this expression, gradient descent can be used to (see Section

2.4).

c© Martial Luyts 160

1) Skip-gram model

• In contrary to the CBOW, the skip-gram model will be able to predict the
surrounding words wt−n, . . . , wt−1, wt+1, . . . , wt+n, given the middle word wt;

• Therefore, the setup is largely the same as CBOW, but we essentially swap the
input and output;

• Steps (similar to CBOW steps):

1. The middle word (wt) is first encoded as a one-hot word vector (xt ∈ R|V |x1);

c© Martial Luyts 161

2. The one-hot encoding vector is passed as an input to an embedding layer
(initialized with some random weights), to obtain our embedded word vector:

ut = W (1) x xt,

with similar notations as before;

3. Since there is no averaging, just set: h = ut;

4. Generate 2n score vectors vt−n, . . . , vt−1, vt+1, . . . , vt+n using
v = W (2) x h;

5. Turn each of the scores into probabilities: ŷ = softmax(z);

6. Goal: (ŷt−n; . . . ; ŷt−1; ŷt+1; . . . ; ŷt+n) = (xt−n; . . . ;xt−1;xt+1; . . . ;xt+n).

c© Martial Luyts 162

• Schematic overview:

c© Martial Luyts 163

• As in CBOW, the following objective function needs to be minimized:

Ŵ = argminW
{
−log

[
P (wi−n, . . . , wi−1, wi+1, . . . , wi+n | wi)

]}
(?)
= argminW

−log

 2n∏
j=0,j 6=n

P (wi−n+j | wi)


= argminW

−log

 2n∏
j=0,j 6=n

exp(W i−n+j(2)h)∑|V |
k=1 exp(W

i−n+j(2)
k h)


= argminW

−
2n∑

j=0,j 6=n

W i−n+j(2)h + log

 |V |∑
k=1

exp(W
i−n+j(2)
k h)


• Note: The Naive Bayes assumption is invoked in (?), i.e., given the

center word wi, all output words wi−n, . . . , wi−1, wi+1, . . . , wi+n are assumed
completely independent.

c© Martial Luyts 164

• Constraint: Gradient computation for each step contains the sum of | V |
terms, which becomes computationally huge, especially when | V | is large.

• Idea: Approximate it, such that it becomes computationally less heavy to
optimize!

• Question: How can we do this?

• Answer: Negative sampling!

c© Martial Luyts 165

• Principle: For every training step, instead of looping over the entire
vocabulary V , we can just sample several ”negative” samples, say
S1, . . . , SB, each consisting of the target wt plus a ”noise word” wx;

• To incorporate this technique into the Skip-gram model, for example, we need
to update the:

• Objective function;

• Gradients;

• Update rules.

• It is in fact optimizing a different objective, i.e., try to (1) maximize the
probability of a word wt and context wc being in the corpus data if it indeed
is, and (2) maximize the probability of wt and wx not being in the corpus
data if it indeed is not.

c© Martial Luyts 166

• Consider a word-context pair (wt, wc), t, c = 1, . . . , | V |, t 6= c, and denote
the probability that (wt, wc) came from the corpus data by
P (D = 1 | wt, wc);

• Logically, P (D = 0 | wt, wc) will be the probability that (wt, wc) did not
come from the corpus data;

• Question: How to compute these probabilities?

• Answer: We can rely on embedding similarity, i.e., a word is likely to
occur near the target if its embedding vector is similar to the target
embedding

• Intuition: Two embedding vectors ut and uc are similar if they have a
high dot product:

Similarity(wt, wc) ≈ ut · uc.

c© Martial Luyts 167

• To turn the dot product into a probability, the sigmoid function
σ(wt · wc) will be used:

P (D = 1 | wt, wc) = σ(wt · wc) =
1

1 + exp(−ut · uc)

P (D = 0 | wt, wc) = σ(−wt · wc) =
1

1 + exp(ut · uc)

• Skip-gram relies on the simplifying assumption that all context words are
independent, allowing us to calculate the following probability:

P (D = 1 | wt;wt−n, . . . , wt−1, wt+1, . . . , wt+n) =

2n∏
j=0,j 6=n

σ(wt · wt−n+j)

P (D = 0 | wt;wt−n, . . . , wt−1, wt+1, . . . , wt+n) =

2n∏
j=0,j 6=n

σ(−wt · wt−n+j)

c© Martial Luyts 168

• Taking a simple maximum likelihood approach of (1) and (2), the MLE is
found as follow:

Ŵ = argmaxW


 2n∏
j=0,j 6=n

P (D = 1 | wt, wt−n+j)


︸ ︷︷ ︸

(1)

·

 ∏
(wt,wx)∈S1,...,B

P (D = 0 | wt, wx)


︸ ︷︷ ︸

(2)



c© Martial Luyts 169

= argmaxW


 2n∑
j=0,j 6=n

log
(
P (D = 1 | wt, wt−n+j)

)
·

 ∑
(wt,wx)∈S1,...,B

log
(
1− P (D = 1 | wt, wx)

)
= argmaxW


 2n∑
j=0,j 6=n

log

(
1

1 + exp(−ut · ut−n+j)

)
·

 ∑
(wt,wx)∈S1,...,B

log

(
1

1 + exp(ut · ux)

)
• To maximize this expression, gradient descent can be used (Section 2.4).

• After training W = (W (1);W (2)), the embeddings of the needed words can
be extracted from the embedding layer.

c© Martial Luyts 170

• Schematic overview of Skip-gram model with Negative sampling:

c© Martial Luyts 171

4. Attribute Selection

• Depending on the task, and therefore the choosen text mining technique
used for it, different attributes can be chosen;

• In language models (Section 5.1), for example, one often rely on word
embeddings attributes, for reflecting the semantic nature of words;

• In sentiment analysis, i.e., a part within topic modelling (Section 5.2), one could
rely on data attributes (e.g., number of words in a sentence, number positive
lexicon words in a sentence, etc.), or even word embeddings.

c© Martial Luyts 172

5. Text Mining Techniques

• As seen in the introduction part of this course (Section 1.4), text mining is used
in many applications, ranging from text summarization, sentiment
analysis, to chatbots like ChatGPT;

• In what follows, we will describe 2 important applications of text mining, i.e.,

• Language Models

• Topic modelling

c© Martial Luyts 173

5.1 Language Models

• While CBOW and Skip-grams model are primarly used to derive word
embeddings from their hyperparameters, they essentially predict word in context;

• Therefore, they can be seen as simple language models

• Language model (LM): Probabilistic model of word sequences used for
word prediction

Examples:

• N -gram models predicting the next word from the previous n− 1 words =
AUTOREGRESSIVE LM;

c© Martial Luyts 174

• Predicting a words given left and right context (e.g., CBOW, BERT) =
MASKED LM;

• LMs are often used in practice, to simplify our lifes, e.g.,

• Speech recognition;

c© Martial Luyts 175

• Language generation (e.g., ChatGPT; Machine translation);

c© Martial Luyts 176

• Spell correction

• In this chapter, several types of LMs will be considered, i.e., (1) classical LMs
based on word frequency count: N-gram models & (2) LM based on
NN architectures.

c© Martial Luyts 177

(1) Classical LMs based on word frequency count: N-gram models

• Similar within POS tagging (Section 2.4), the N-gram approach can also be used
to predict words;

• Assume a sentence, composed of a sequence of words W = w1, w2, . . . , wn

• Goal: Model the joint density of an entire sequence of words, i.e.,
P (w1, w2, . . . , wn)(= (?))

• Using the chain rule of probability, we get:

P (w1, w2, ..., wn) = P (w1)P (w2 | w1)P (w3 | w1, w2)...P (wn | w1, w2, ..., wn−1)

=

n∏
k=1

P (wk | w1:k−1)

c© Martial Luyts 178

• Intuition of the N-gram model: Instead of computing the probability of a
word given its ENTIRE history, i.e., P (wk | w1:k−1), we can APPROXIMATE the
history by just the last few N − 1 words;

Examples:

• 2-gram or bigram model:

(?) ≈
n∏
k=1

P (wk | wk−1)
(Sec.2.4)

=

n∏
k=1

C(wk−1wk)∑
w∈W C(wk−1w)

• 3-gram or trigram model:

(?) ≈
n∏
k=1

P (wk | wk−2, wk−1)
(Sec.2.4)

=

n∏
k=1

C(wk−2wk−1wk)∑
w∈W C(wk−2wk−1w)

c© Martial Luyts 179

• In a bigram model, for example, counts C(wk−1wk) (k=1, . . . , n) can easily be
observed in the Word-Word Co-occurrence Matrix (see Section 3.4)

Example: Berkeley Restaurant Project, i.e., a dialogue system from the last
century that answered questions about a database of restaurants in Berkeley,
California (Jurafsky et al., 1994)

c© Martial Luyts 180

• The conditional probabilities P (wk | wk−1) are given by the Word-Word
Probability Co-occurrence Matrix:

c© Martial Luyts 181

• In the bigram model, the probability P (< S > i want chinese food < E >) is
approximated as follows:

P (< S > i want chinese food < E >) = P (i |< S >) · P (want | i) ·
P (chinese | want) ·
P (food | chinese) ·
P (< E >| food)

= 0.25 · 0.33 · · · · · 0.68

• Question: How can we derive a ”new” sentence from the N-gram model?

c© Martial Luyts 182

• Answer: Sampling!

• Sampling from a distribution means to choose random points according to
their likelihood;

• Sampling for a N-gram model - representing a distribution over
sentences - means to generate some sentences, choosing each sentence
according to its likelihood as defined by the model;

Example: Consider a vocabulary V of words with size | V |, i.e.,
w1, w2, . . . , w|V |, and we have already given the sentence part

” This︸︷︷︸
w100

was︸︷︷︸
w5

a︸︷︷︸
w67

”

c© Martial Luyts 183

• In the bigram model, we sample from the Word-Word Probability
Co-occurrence Matrix row corresponding to word w67, i.e., ”a”:

Vocabulary

w1 w2 . . . w|V |

Vocabulary

...

w67 P (w1 | w67) P (w2 | w67) . . . P (w|V | | w67)

...

• It is essentially drawing a random sample from a multinomial
distribution with probabilities {P (w1 | w67), P (w2 | w67), . . . ,
P (w|V | | w67)

}

c© Martial Luyts 184

• Remark: The quality of sampling new sentences from N-gram models depends
on two aspects:

• Training corpus, i.e., the conditional probabilities often encode specific
facts about a given training corpus;

• Value N, i.e., new sampled sentences are more coherent if we increase the
value of N .

c© Martial Luyts 185

• Question: But how do we evaluate the quality of the model?

• In other words, does there exist a certain measure that indicates the performance
of the model for the training corpus?

c© Martial Luyts 186

• Answer: Yes, likelihood principles!

• When the model fits the training corpus perfect, all conditional probabilities
equal 1;

• As result, the log-likelihood (denoted by l) should be equal to 0 for obtaining
a perfect fit;

• Reminder: Log-likelihood = sum of the logarithm of all conditional
probabilities;

• For a non-perfect fit of the model, l < 0.

c© Martial Luyts 187

• For convenience reasons, i.e., the lower, the better, −l will be used as
measure of performance

• Question: And what do we do with words listed in V that do not occur in the
training corpora?

• As consequence, these words will never be chosen when sampling new sentences,
even though they can be valid and coherent (for example, when the training
corpus is small).

c© Martial Luyts 188

• Answer: Smoothing!

• Smoothing assigns some non-zero probability to any N-gram, even if it is not
seen in the training corpus;

• Smoothing can be viewed as discounting (lowering) some non-zero counts in
order to get the probability mass that will be assigned to the zero counts.

• Simple and easy smoothing techniques to consider are the (1) Laplace
(add-one) smoothing and (2) add-k smoothing.

• In what follows, we will discuss these techniques!

c© Martial Luyts 189

• Note: In the literature, other (more advanced) smoothing techniques exist, e.g.,
stupid backoff, Kneser-Ney smoothing

→ Out of scope of this course!

c© Martial Luyts 190

(1) Laplace (add-one) smoothing

• Simple idea: Add one to all the N-gram counts, before normalizing them into
probabilities;

Example: Bigram model

PLaplace(wk | wk−1) =
C(wk−1wk) + 1∑

w∈W [C(wk−1w) + 1]
=

C(wk−1wk) + 1∑
w∈W C(wk−1w)+ | V |

• All the counts that used to be 0 will now have count of 1, the counts of 1 will be
2, etc.

c© Martial Luyts 191

• Our example: Berkeley Restaurant Project (BeRP)

1. Counts C(wk−1wk) + 1:

c© Martial Luyts 192

2. Probabilities PLaplace(wk | wk−1):

• Note: By adding 1 to all counts, we see that some original non-zero
probabilities, e.g., P (to | want) = 0.66, decreased dramatically, i.e.,
PLaplace(to | want) = 0.26;

→ This sharp change occurs because too much probability mass is moved to
all the zeros!

c© Martial Luyts 193

(2) Add-k smoothing

• Idea: Move a bit less of the probability mass from the observed to the
unobserved N-grams;

• To do this, instead of adding 1 to each count, a fraction count k is added;

Example: Bigram model

PAdd−k(wk | wk−1) =
C(wk−1wk) + k∑

w∈W [C(wk−1w) + k]
=

C(wk−1wk) + k∑
w∈W C(wk−1w) + k | V |

c© Martial Luyts 194

(2) LM based on NN architectures

• Neural LMs (NLMs) have many advantages over the N-gram LMs, i.e.,

• Handle much longer histories;

• Generalize better over contexts of similar words;

• More accurate at word prediction;

• Nevertheless, NLMs are more complex, slower and need more energy to train,
and are less interpretable than N-gram models;

c© Martial Luyts 195

• Nowadays, neural network frameworks are considered as golden standard for LM,
especially when having with a huge amount of training corpus;

• In what follow, we will discuss three important NLM frameworks, i.e., (1)
Feedforward NLMs, (2) Recurrent NLMs, and (3) Transformers;

c© Martial Luyts 196

(1) Feedforward NLMs

• Feedforward NLM = Feedforward NN that takes as (1) input at time t a
representation of some number of previous words (wt−1, wt−2, etc.) and (2)
outputs a probability distribution over possible next words in vocabulary V.

• Feedforward NN = Multilayer neural network in which the units are
connected with no cycles, i.e., the outputs from units in each layer are passed
to units in the next higher layer; no outputs are passed back to lower layers

c© Martial Luyts 197

• In literature, feedforward NN are also referred as multilayer perceptrons

• Thus, like N-gram models, feedforward NLMs approximate the probability of a
word wt given the entire prior context, i.e., P (wt | w1:t−1), by approximating
based on the t− 1 previous words:

P (wt | w1:t−1) ≈ P (wt | wt−n+1, . . . , wt−1)

• CBOW (Section 3.5) is an example of a feedforward NLM.

• In what follows, we will explain the general steps taken in a feedforward NLM,
with n = 4 and only 1 hidden layer.

c© Martial Luyts 198

• Architecture of a feedforward NLM with n = 4 & 1 hidden layer:

c© Martial Luyts 199

• In summary, the equations for a feedforward NLM with n = 4 & 1 hidden
layer are:

e = [Ext−3; Ext−2; Ext−1]

h = σ (We + b)

z = Uh

ŷ = softmax(z)

• To optimize the hyperparameters within this NN, i.e., E, W, U, and b, a
specific loss function will be minimized through gradient descent (Section
3.5).

c© Martial Luyts 200

(2) Recurrent NLMs

• Before diving into recurrent NLMs, we need to have some notion about recurrent
NN.

• Recurrent NN (RNN) = Any network that contains a cycle within its network
connections, i.e., the value of some unit is directly, or indirectly, dependent on its
own earlier outputs as an input

• For simplicity and starting point in this discussion, we first consider a class of
RNNs referred as Elman Networks (Elman, 1990) or simple recurrent
networks

c© Martial Luyts 201

• From the figure, a recurrent link is now added to a feedforward NN, presented
by the blue dashed line.

• This link augments the input to the computation at the hidden layer with the
value of the hidden layer from the preceding point in time

• Let’s see how to apply RNNs to the language modeling task, i.e., recurrent NLMs

c© Martial Luyts 202

• Recurrent NLMs = Recurrent NN that process the input sequence one
word at a time, attempting to predict the next word from the current word and
the previous hidden state;

• Note: yt = P (wt+1 | w1, . . . , wt)

c© Martial Luyts 203

• The equations for a simple recurrent network are:

et = Ext
ht = σ (Uht−1 + Wet)

zt = Vht
ŷt = softmax(zt)

• Comparison with N-gram & feedforward NLMs:

Since the hidden state can represent information about all of the preceding words
all the way back to the beginning of the sequence,

• Recurrent NLMs don’t have the limited context problem that N-gram models
have;

• Recurrent NLMs don’t limit to the fixed context that feedforward NLMs have;

c© Martial Luyts 204

• Similar to N-gram models, generating ”new” sentences from NLMs can be
achieved by sampling from the softmax distribution, as follows:

• Sample a word in the output from the softmax distribution that results from
using the beginning of sentence marker < S >, as the first input;

• Use the word embedding for that word as the input to the network at the
next time step, and then sample the next word in the same fashion;

• Continue generating until the end of the sentence marker < E > is sampled
or a fixed length limit is reached.

→ This is also referred as autoregressive generation!

c© Martial Luyts 205

c© Martial Luyts 206

• Let’s now look at a popular application in NLP, i.e., machine translation,
where a recurrent NLM architecture is used as core technology

•Machine translation = Prediction of a sequence (in a target language) from
another sequence (in a source language)

(SOURCE LANGUAGE)

It is great being here.

↓
Es genial estar aqúı.

(TARGET LANGUAGE)

• Question: What kind of (recurrent) NLM architecture is standardly used to
address this task?

c© Martial Luyts 207

• Answer: Encoder-decoder NLMs (also referred as sequence-to-sequence
NLMs)

• Key idea of the architecture: The use of an encoder network that takes
an input sequence and created a contextualized representation of it, called
the context. This representation is then passed to a decoder which generates
a task-specific output sequence

c© Martial Luyts 208

• This architecture can be seen as the core technology inside Google’s translate
service

c© Martial Luyts 209

• To begin, we first consider the setup for a simplified encoder-decoder network
based on a pair of RNNs

• Let x = (x1, . . . , xn) refer to the source text (e.g., ”the green witch arrived”,
English) plus the separator token < S >, and assume y = (y1, . . . , yv) to be
the target text (e.g., ”llegó la bruja verde”, Spanish);

• The basic RNN version of encoder-decoder approach to machine translation
can then presented as follows:

c© Martial Luyts 210

• Step 1: The source text is run through the network to generate hidden
states, until we get to the end of the source, i.e., ”arrived”

• Step 2: Starting from input < S > and previous hidden state hn,
autoregressive generation is used to sample words from the target language

• The equations of the decoder part are defined as:

hen = hd0
hdt = g

(
hdt−1; ŷt−1

)
zt = f

(
hdt
)

ŷt = softmax(zt)

• Remark: Superscript e and d denote the encoder and decoder part,
respectively;

c© Martial Luyts 211

• Purpose of the encoder: Generate a contextualized representation of the
input, embodied in the final hidden state hen

• This representation, also called c for context, is then passed to the decoder.

• Limitation 1: The influence of context vector c will wane as the output
sequence is generated;

• Possible solution: Make the context vector c available at each step in the
decoding process;

• This result in a more generalized presentation of the framework;

c© Martial Luyts 212

• Generalization:

c© Martial Luyts 213

• The equations of the decoder part are adapted accordingly as follows:

c = hen
hd0 = c

hdt
(?)
= g

(
hdt−1; ŷt−1; c

)
zt = f

(
hdt
)

ŷt = softmax(zt)

• To compute the most likely output in the decoder at each time t, the argmax
over the softmax output is taken, i.e.,

ŷt = argmaxw∈VtargetP (w | x, y1, . . . , yt−1)

c© Martial Luyts 214

• Limitation 2: The only thing the decoder knows about the source text x is
embedded in the context vector c

• As result, information at the beginning of the source text x, especially for long
sentences, may not be equally well represented in c

• Possible solution: Attention mechanism;

• Principle: Allow the decoder to get information from all the hidden states of
the encoder, i.e., he1,h

e
2, . . . ,h

e
n, not just the last hidden state hen

• Since the number of hidden states varies with the size of the input n, the
entire tensor of encoder hidden state vectors cannot be used directly as the
context for the decoder

c© Martial Luyts 215

• Therefore, a function of all hidden states of the encoder can be considered,
i.e., c = f (he1,h

e
2, . . . ,h

e
n)

• Idea of attention:

• Create a single fixed-length vector c by taking a weighted sum of
he1,h

e
2, . . . ,h

e
n

• The weights focus on (”attend to”) a particular part of the source text
that is relevant for the word the decoder is currently producing

• Thus, the static context vector c is actually replaced with dynamically
ones, derived from he1,h

e
2, . . . ,h

e
n and different for each word in decoding,

i.e., ct, for every decoding step t

c© Martial Luyts 216

•Mathematically:

ct =

n∑
j=1

αtjh
e
j

• As consequence, equation (?) in the decoder part is adapted as follows:

hdt = g
(
hdt−1; ŷt−1; ct

)

c© Martial Luyts 217

• Question: But how are these weights αtj calculated?

• Reminder: The weights αtj ∈ [0, 1] focus on (”attend to”) a particular part
of the source text that is relevant for the word the decoder is currently
producing

• In other words, we need to know how relevant each encoder state j is to the
decoder state captured in hdt−1

• Attention capture relevance by computing - at each state t during decoding -
a score(hdt−1,h

e
j), for each encoder state j

c© Martial Luyts 218

• Simple proposal: Score relevance by similarity, through a so-called
dot-product attention:

score(hdt−1,h
e
j) = hdt−1 · hej

• Since αtj ∈ [0, 1], the dot-product attention will be normalized through the
softmax function:

αtj = softmax(hdt−1 · hej)

=
exp(hdt−1 · hej)∑n

k=1 hdt−1 · hek

• Thus, αtj tells us the proportional relevance of each encoder hidden state j
to the prior hidden decoder state hdt−1.

c© Martial Luyts 219

• Graphical representation of an encoder-decoder network with
attention mechanism:

c© Martial Luyts 220

(3) Transformers

• The usage of attention mechanisms withint RNN has led to the development of
transformers, i.e., a state-of-the-art NLM developed by Google.

• Transformers = Stacks of ”transformer blocks”, each of which is a
multilayer NN made by combining

• simple linear layers;

• feedforward networks;

• self-attention layers, the key in-
novation of transformers.

c© Martial Luyts 221

• The transformer offers new mechanisms (self-attention and positional
encodings) that help represent time and focus on how words relate to each
other over long distances.

• This self-attention mechanism can be seen as a slight modification of the
attention mechanism discussed before.

• In what follows, we will explain the underlying mechanisms and construction
within Transformers.

c© Martial Luyts 222

Self-attention mechanism:

• Reminder: Core of an attention-based approach

• The ability to compare an item of interest (say xi) to a collection of other
items (say xj, j ≤ i) in a way that reveals their relevance in the current
context. In the case of self-attention, the set of comparisons are to other
elements within a given sequence. The result of these comparisons is then
used to compute an output for the current input (say yj).

score(xi,xj) = xi · xj
αij = softmax(score(xi,xj)) ∀j ≤ i

=
exp(score(xi,xj))∑i
k=1 exp(score(xi,xj))

∀j ≤ i

yi =
∑
j≤i

αijxj

c© Martial Luyts 223

• Transformers allow us to create a more sophisticated way of representing how
words can contribute to the representation of longer inputs.

• Question: How will it do this?

c© Martial Luyts 224

• Answer: Attention-based approach with QUERY, KEY and VALUE

Consider three different roles that each input embedding plays during the course
of the attention process.

• As the current focus of attention when being compared to all of the other
preceding inputs (QUERY);

• In its role as a preceding input being compared to the current focus of
attention (KEY);

• As a VALUE used to compute the output for the current focus of attention.

c© Martial Luyts 225

• To capture these three different roles, weight matrices WQ, WK, and WV are
introduced, used to project each input embedding vector xi into a representation
of its role as a QUERY, KEY, and VALUE, respectively.

qi = WQxi, ki = WKxi, vi = WVxi

c© Martial Luyts 226

• Given these projections, the score between a current focus of attention, xi, and
an element in the preceding context, xj, consists of a dot product between its
query vector qi and the preceding elements key vectors kj.

score(xi,xj) = qi · kj
• Remark: The result of a dot product can be an arbitrarily large (positive or

negative) value. Exponentiating such large values can lead to numerical issues
and to an effective loss of gradients during training. Therefore, NLP
researchers often use the following score function:

score(xi,xj) =
qi · kj√
dk

;

dk = dimensionality of the query and key value.

c© Martial Luyts 227

• The softmax calculation remains the same:

αij = softmax(score(xi,xj)) ∀j ≤ i

=
exp(score(xi,xj))∑i
k=1 exp(score(xi,xj))

∀j ≤ i

• The output calculation for yi is now based on a weighted sum over the value
vectors v.

yi =
∑
j≤i

αijvj

c© Martial Luyts 228

• Graphical representation of the attention-based approach with KEY,
QUERY and VALUE:

c© Martial Luyts 229

• Generalization for N words in a sentence:

• Since each output yi is computed independently, this entire process can be
parallelized by taking advantage of efficient matrix multiplication routines by
packing the input embeddings of the N tokens of the input sequence into a
single matrix X ∈ RNxd. That is, each row of X is the embedding of one
token of the input.

Q = XWQ, K = XWK, V = XWV ,

Q ∈ RNxd, K ∈ RNxd, V ∈ RNxd,

• Thus, the entire self-attention step for an entire sequence of N tokens reduces
to the following computation:

SelfAttention(Q,K,V) = softmax

(
QKT

√
dk

)
V.

c© Martial Luyts 230

c© Martial Luyts 231

• Problem: QKT results in a score for each query value to every key value,
including those that follow the query. This is inappropriate in the setting
of language modeling since guessing the next word is pretty simple if you
already know it.

• Solution: Elements in the upper-triangular portion of the matrix are zeroed
out (set to −∞), thus eliminating any knowledge of words that follow in the
sequence.

c© Martial Luyts 232

Transformer blocks:

• The self-attention calculation lies at the core of whats called a ”transformer
block”, which, in addition to the self-attention layer, includes additional
feedforward layers, residual connections, and normalizing layers.

• Question: What are (1) residual connections and (2) normalizing layers?

c© Martial Luyts 233

• Answer: (1) Residual connections

• Residual connections = Connections that pass information from a lower
layer to a higher layer without going through the intermediate layer.

• Allowing information from the activation going forward and the gradient
going backwards to skip a layer improves learning and gives higher level
layers direct access to information from lower layers (He et al., 2016).

• Residual connections in transformers are implemented by adding a layers
input vector to its output vector before passing it forward.

c© Martial Luyts 234

• In Transformers, these connections are used with both the attention and
feedforward sublayers:

z = LayerNorm(x + SelfAttention(x))

y = LayerNorm(z + FFN(z))

c© Martial Luyts 235

(2) Normalizing layers

• Layer normalization (or layer norm) is one of many forms of normalization
that can be used to improve training performance in deep neural networks by
keeping the values of a hidden layer in a range that facilitates gradient-based
training.

• Layer norm is a variation of the standard score, or z-score, from statistics
applied to a single hidden layer.

• Procedure:

1. Given a hidden layer with dimensionality dh, we first calculate its mean
ands standard deviation:

µ =
1

dh

dh∑
i=1

xi, σ =

√√√√ 1

dh

dh∑
i=1

(xi − µ)2

c© Martial Luyts 236

2. The vector components are normalized by substracting this mean from
each and dividing by the standard deviation:

x̂ =
(x− µ)

σ

3. In the standard implementation of layer normalization, two learnable
parameters γ and β are introduced:

LayerNorm(x) = γx̂ + β

c© Martial Luyts 237

Multi-head attention:

• Different words in a sentence can relate to each other in many different ways
simultaneously. For example, distinct syntactic, semantic, and discourse
relationships can hold between verbs and their arguments in a sentence.

• Problem: It would be difficult for a single transformer block to learn to capture
all of the different kinds of parallel relations among its inputs

• Solution: Multi-head attention layers

• Sets of self-attention layers, called
heads, that reside in parallel layers at the
same depth in a model, each with its own
set of parameters.

• Given these distinct sets of parameters, each
head can learn different aspects of the rela-
tionships that exist among inputs at the same
level of abstraction.

c© Martial Luyts 238

• Procedure:

• Each head i in a self-attention layer is provided with its own set of KEY,
QUERY and VALUE matrices:

WK
i ∈ Rdxdk, WQ

i ∈ Rdxdk, WV
i ∈ Rdxdv

• These get multiplied by the inputs packed into X to produce

Ki ∈ RNxdk, Qi ∈ RNxdk, Vi ∈ RNxdv

• The output of each of the h heads, i.e.,

SelfAttention(Qi,Ki,Vi) = softmax

(
QiK

T
i√

dk

)
Vi,∀i ∈ {1, . . . , h},

is of shape Nxdv, and so the output of the multi-head layer with h heads
consists of h vectors of shape Nxdv.

c© Martial Luyts 239

• To make use of these vectors in further processing, they are combined and
then reduced down to the original input dimension d. This is accomplished by
concatenating the outputs from each head and then using yet another linear
projection,

WO ∈ Rhdvxd,

to reduce it to the original output dimension for each token, or a total Nxd
output.

•Mathematically:

MultiHeadAttention(X) = (head1 ⊕ · · · ⊕ headh)W
O;

Qi = XWQ
i ;Ki = XWK

i ;Vi = XWV
i ;

headi = SelfAttention(Qi,Ki,Vi)

c© Martial Luyts 240

• Graphical representation:

• Remark: This multi-head layer replaces the single self-attention layer in the
transformer block (Figure 10.4).

c© Martial Luyts 241

Positional encoding:

• With RNNs, information about the order of the inputs was built into the
structure of the model.

• Unfortunately, the same isn’t true for transformers.

• The models as we’ve described them so far dont have any notion of the
relative, or absolute, positions of the tokens in the input.

• If you scramble the order of the inputs in the attention computation in Fig.
10.2 you get exactly the same answer.

• Question: But how is this information then included in the framework?

c© Martial Luyts 242

• Answer: Positional encoding

• Modify the input embeddings by combining them with
positional embeddings specific to each position in an
input sequence.

• In the original work of transformers, the word embedding for each input are
simply added to its corresponding positional embedding.

c© Martial Luyts 243

• As result, the positional embedding needs to have the same dimensionality as the
word embedding.

• While word embeddings can be achieved with the classical CBOW or skip-gram
models, a static function is originally proposed that maps integer inputs to
real valued vectors in a way that captures the inherent relationships among
the positions.

• Question: How is this achieved?

c© Martial Luyts 244

• Answer: Sine and cosine functions with differing frequencies

• Suppose you have an input sequence of length L and require the

position of the kth object in the sequence.

• The positional encoding is given by sine and cosine functions of
varying frequencies:

Pk,2i = sin

(
k

n2i/d

)
;

Pk,2i+1 = cos

(
k

n2i/d

)
.

c© Martial Luyts 245

Here:

• k: Position of an object in the input sequence;

• d: Dimension of the embedding space (i.e., same as the word embedding);

• Pk,j: Position function for mapping a position k in the input sequence to index
(k, j) of the positional matrix;

• n: User-defined scalar (e.g., set to 10000 by the authors of ”Attention is all you
need”);

• i: Used for mapping to column indices with a single value of i maps to both sine
and cosine functions.

c© Martial Luyts 246

• Example: Consider the sentence ”I am a Robot”

• First index the word, based on the position within the sentence, and choose
the dimensionality of the word embedding (say d) to create the initial
positional encoding matrix:

c© Martial Luyts 247

• Choosing n=100 (user-defined), and assume that d=4, the following
positional encoding is obtained:

c© Martial Luyts 248

c© Martial Luyts 249

• Intuitively:

• Assume the following word embeddings for the sentence ”Squatch eats
pizza”, originating from CBOW with d=4:

• A set of numbers are added that correspond to the word order:

c© Martial Luyts 250

• The numbers that represent the word order come from a sequence of
alternating sine and cosine functions:

c© Martial Luyts 251

• Each function gives us specific values for each words embedding. For
example, the position values for the first word come from the corresponding
y-axis coordinates on the functions:

c© Martial Luyts 252

• For the second and third word, a similar approach is followed:

c© Martial Luyts 253

c© Martial Luyts 254

• Question: But why are alternating sine and cosine functions suitable for this
task?

• Answer:

• Output of sine and cosine are between -1 and 1, which is normalized. As
consequence, output values don’t become exponentially large in size, which is
often more manageable for complex NN.

• By choosing a reasonable embedding dimensionality d, unique
representations for each position will be obtained due to the varying
wave lengths of the functions.

c© Martial Luyts 255

SUMMARY:

• The self-attention mechanism makes sure that the similarity between a
specific word, and all other words in a sentence is taken into account.

• Residual connections and normalizing layers make it easier to train the
model by allowing the Self-attention layer to establish relationships among the
words without having to also preserve the word embedding and position
encoding information, and keeping the values of a hidden layer in a range that
facilitates gradient-based training.

c© Martial Luyts 256

• To capture word similarity and different relationships within the input and
output sentence, separately, multi-head attention layers are both present
in the encoder and decoder part:

c© Martial Luyts 257

• To capture word similarity and different relationships between the input
and output sentence, a multi-head attention (Encoder-Decoder) layer is
present to allow the decoder to keep track of the significant words in the input:

c© Martial Luyts 258

Application of Transformers: A few examples

• In 2018, an encoder-only transformer was used in the (more than 1B-sized)
BERT model, improving upon ELMo.

• In 2020, vision transformer and speech-processing convolution-augmented
transformer outperformed recurrent neural networks, previously used for vision
and speech.

• In 2020, difficulties with converging the original transformer were solved by
normalizing layers before (instead of after) multiheaded attention by Xiong et al.
This is called pre-LN Transformer.

• In 2023, uni-directional (”autoregressive”) transformers were being used in the
(more than 100B-sized) GPT-3 and other OpenAI GPT models.

c© Martial Luyts 259

c© Martial Luyts 260

5.2 Text classi�cation

• It is essential in NLP to organize, structure and categorize complex text, turning
it into meaningful data

• This is necessary in a variety of applications, e.g.,

• Email filtering

c© Martial Luyts 261

• Sentiment analysis/opinion mining

c© Martial Luyts 262

• Topic analysis

c© Martial Luyts 263

• Intent detection

• Question: How can we derive these outcomes?

c© Martial Luyts 264

• Answer: Text classification

• Text classification = Process of assigning categories (tags) to unstructured
text data

• In what follows, we will discuss two commonly used practices of text
classification, i.e., (1) sentiment analysis (often referred as opinion mining)
and (2) topic modelling, respectively.

c© Martial Luyts 265

(1) Sentiment analysis

• Sentiment analysis = Identify and extract sentiment or opinion from within
text (positive, negative, neutral, etc.);

• It can focus on polarity of opinion (positive, negative, neutral), personal feelings
(angry, happy, sad, etc.), and intentions or objectives (interested/not interested);

c© Martial Luyts 266

• Important application area: Marketing & Retail

→ Based on sentiments, marketeers & retailers can create products and services
that meet their client needs!

c© Martial Luyts 267

• To perform this task, several techniques exist, e.g., logistic & multinomial
regression (statistical), feedforward NN (deep learning);

• Here, we will discuss opinion classification (positive, negative, neutral) with a
feedforward NN, based on (1) features and (2) word embeddings!

c© Martial Luyts 268

(1) Based on features

• Consider the sentence ”dessert was great”;

• Assume hand-built human-engineered features as input layer, e.g., input element
xi could be scalar features:

• x1 = # words in a sentence;

• x2 = # positive lexicon words in a sentence;

• x3 =

1 if ”no” is in the sentence

0 otherwise

• The output layer ŷ denotes the estimated probability of the sentiments, i.e., ŷ1

the probability of positive sentiment, ŷ2 the probability of negative sentiment,
and ŷ3 the probability of neutral;

c© Martial Luyts 269

• Architecture of the feedforward NN framework:

c© Martial Luyts 270

• The equations of this framework can be formulated as follows:

x = [x1; x2; x3] (each xi is a hand-designed feature)

h = σ (Wx + b)

z = Uh

ŷ = softmax(z)

• Limitation: Since the number of features are limited, a loss of information is
present

• Possible solution: Word embeddings!

c© Martial Luyts 271

(2) Based on word embeddings

• Reconsider the sentence ”dessert was great”, with w1 = dessert, w2 = was, w3

= great;

• We can create 3 embeddings from these words, i.e., e1, e2, e3 (each of
dimensionality d)

• A basic, yet simple idea is to apply some sort of ”pooling” function to these
embeddings, e.g., by taking their mean:

xmean =
1

n

3∑
i=1

ei

c© Martial Luyts 272

• Architecture of the feedforward NN framework:

c© Martial Luyts 273

• The equations of this framework can be formulated as follows:

x = mean [e1; e2; e3]

h = σ (Wx + b)

z = Uh

ŷ = softmax(z)

c© Martial Luyts 274

(2) Topic modelling

• Topic modelling = A statistical modeling technique to identify clusters or
groups of similar words within a body text.

• It uses the semantic structures in text to identify common themes (topics)

c© Martial Luyts 275

• Purpose of this technique:

• Discover hidden (latent) themes in the collection

• Classifying documents into the discovered themes

• Use this classification technique to organize/summarize/search documents

• By annotating a document, based on the topics predicted by the modelling
method, we are able to optimize our search process

• Question: But what topic models exist that enables the prediction of (latent)
topics?

c© Martial Luyts 276

• Answer: Probabilistic latent semantic indexing (PLSI) & latent
Dirichlet allocation (LDA)

• In what follows, we will discuss the (1) PLSI model & (2) LDA model!

c© Martial Luyts 277

(1) Probabilistic latent semantic indexing (PLSI)

• Probabilistic latent semantic indexing (PLSI) = Statistical technique for
the analysis of co-occurence data

• It can be seen as a latent variable model, i.e., a statistical model where the
latent/hidden variables are associated with the observed variables

• Latent/hidden variable: Topic Z (z ∈ {z1, . . . , zK})

• Observed variables:

• Document D (d ∈ {d1, . . . , dN})

• Word W (w ∈ {w1, . . . , wW})

c© Martial Luyts 278

• PLSI associate topic z with observed word-document co-occurence (w, d) via a
generative process, as follows:

1. Sample a document d ∈ {d1, . . . , dN} from a multinomial distribution with
probability P (d)

2. For each word wi (i ∈ {1, ...,Wd}) in document d:

(a) Select a topic z ∈ {z1, . . . , zK} from a multinomial distribution
conditioned on the given document with probability P (z | d)

(b) Select a word w from a multinomial distribution conditioned on the
previous chosen topic with probability P (w | z)

c© Martial Luyts 279

• Graphical representation of PLSI:

c© Martial Luyts 280

• Assumptions:

• Bag-of-words, i.e., each document is regarded as an unordered collection of
words. More precisely, it means that the joint variable (w, d) is independently
sampled and, consequently, the joint distribution of the observed data will
factorized as a product:

P (D,W) =
∏
(d,w)

P (d, w)

• Conditional independence, i.e., words and documents are conditionally
independent given the topic:

P (w, d | z) = P (w | z) · P (d | z)

P (w | d, z) = P (w | z)

c© Martial Luyts 281

• Mathematically, the PLSI model can be completely defined by specifying the
joint distribution P (d, w) as follows, hereby:

• Using the product rule:

P (d, w) = P (d) · P (w | d)

P (w | d) =
∑

z∈{z1,...,zK}

P (w, z | d)

=
∑

z∈{z1,...,zK}

P (w | d, z) · P (z | d)

• Using the conditional independence assumption:

P (w | d) =
∑

z∈{z1,...,zK}

P (w | z) · P (z | d)

c© Martial Luyts 282

↓

P (d, w) = P (d) ·
∑

z∈{z1,...,zK}

P (w | z) · P (z | d)

(?)
= P (d) ·

∑
z∈{z1,...,zK}

P (z) · P (d | z) · P (w | z)

(?) Using Bayes’ rule

• Following the likelihood principle, we can determine P (d), P (z | d) and
P (w | z) by minimization of the negative log-likelihood function

−l = −
∑

d∈{d1,...,dN}

∑
w∈{w1,...,wWd

}

n(d, w) · log [P (d, w)]

• Here, n(d, w) denotes the term frequency, i.e., number of times w occurred
in document d, observed in the Word-Document Matrix (see p.130);

c© Martial Luyts 283

u0106491
Cross-Out

• Problem: This is a non-convex optimization problem!

• Possible solution: Expectation-Maximization (EM) algorithm!

c© Martial Luyts 284

• The EM algorithm is used to seek a locally optimal solution;

• EM alternates two steps:

• An expectation (E) step computes the posterior probabilities of the latent
variable z, based on the current estimates of the parameters:

P ′(z | d, w) =
P (d) · P (z | d) · P (w | z)∑

z′∈{z1,...,zK} P (d) · P (z′ | d) · P (w | z′)

where P ′(·) indicates the new estimate of the probability for the next step;

c© Martial Luyts 285

• A maximization (M) step updates the parameters once the latent
variables are known using the posterior estimated in the previous E-step:

P ′(w | z) =

∑
d∈{d1,...,dN} n(d, w) · P ′(z | d, w)∑

d∈{d1,...,dN}
∑

w′∈{w1,...,Wd} n(d, w′) · P ′(z | d, w′)

P ′(d | z) =

∑
w∈{w1,...,wWd

} n(d, w) · P ′(z | d, w)∑
d′∈{d1,...,dN}

∑
w∈{w1,...,wWd′

} n(d′, w) · P ′(z | d′, w)

P ′(z) =
1

R
·

∑
d∈{d1,...,dN}

∑
w∈{w1,...,wWd

}

n(d, w) · P ′(z | d, w)

R =
∑

d∈{d1,...,dN}

∑
w∈{w1,...,wWd

}

n(d, w)

c© Martial Luyts 286

• Limitations:

• The number of parameters grows linearly with the number of
documents, such that when training over a large number of documents,
PLSI tends to overfit the training data

• Question: But what are the parameters of this model?

c© Martial Luyts 287

• Answer: The two main parameters in the model are as follows:

• P (w | z): (WD − 1) ·K parameters (for every topic z we have WD

words).

• Remark: We substract 1 from the total number of words per
document since the sum of these WD probabilities should be one, so
we lose one degree of freedom!

• P (z | d): (K − 1) ·N parameters (for every document d we have K
topic)

• There is no natural way to compute the probability of a ”new” document
that was not in the training data.

• Therefore, latent Dirichlet allocation (LDA) is often used as (better)
alternative to overcome these issues!

c© Martial Luyts 288

(2) Latent Dirichlet allocation (LDA)

• Similar to PLSI, LDA assumes that

• The semantic content of a document is composed by combining one or more
words from one or more topics;

• Certain words are ambiguous, belonging to more than one topic, with
different probability

Example: The word ”training” can apply to both dogs and cats, but are
more likely to refer to dogs;

• LDA, unlike PLSI, takes into account two important concerns:

• Most documents will contain only a relatively small number of topics. In the
collection, individual topics will occur with different frequencies;

c© Martial Luyts 289

• Within a topic, certain words will be used much more frequently than others.

• To account for these concerns, LDA assigns (prior) probability distributions
to them, i.e.,

• Topics within a document will have a probability distribution such that a
given document is more likely to contain some topics than others

• Words within a topic will also have their own probability distribution;

• Question: What kind of prior distributions are choosen in LDA?

c© Martial Luyts 290

• Answer: Dirichlet distributions!

• Definition:
Dirichlet distribution Dir(α) = A family of continuous multivariate
probability distributions parametrized by a K-dimensional vector
α = (α1, α2, . . . , αK) of positive reals.

The Dirichlet distribution of order K ≥ 2 with parameters
α1, α2, . . . , αK > 0 has the following probability density function:

f (x1, x2, . . . , xK;α1, α2, . . . , αK) =
1

B(α)

K∏
k=1

x
αk−1
k ,

where {xk}Kk=1 belong to the standard K − 1 simplex, i.e.,

K∑
k=1

xk = 1 and xk ∈ [0, 1] for all k ∈ {1, . . . , K} ,

c© Martial Luyts 291

and the normalizing constant B(α) given by

B(α) =

∏K
k=1 Γ(αk)

Γ
(∑K

k=1 αk

).
• Example: K=3

c© Martial Luyts 292

• It is essentially a multivariate generalization of the Beta distribution

• In LDA, two Dirichlet distributions are assumed, i.e., one associating
documents with corresponding topics (left) and one associating topics
with corresponding words (right):

• In this example: 7 documents, 3 topics (science, politics, sports),
and 4 words (referendum, ball, planet, galaxy)

c© Martial Luyts 293

• Let’s dive in each of these distributions:

• Documents-Topics:

• Consider a specific choose for α = (α1, α2, α3) within the Dirichlet
distribution. For every document, the inputs {xk}3

k=1 = {science,
politics, sports} indicates the percentage of ”association” within the
document, based on the chosen Dirichlet distribution;

• Example of 1 document:

Here, the document consists of 90% sports, 7% science and 3%
politics.

c© Martial Luyts 294

• All documents:

c© Martial Luyts 295

• Topics-Words:

• A similar intuition can be followed here, i.e., for every topic (sports,
science, politics), the inputs {xk}4

k=1 = {referendum, ball,
planet, galaxy} gives the percentages of ”association” within the
topic, based on a specific prior Dirichlet distribution choice Dir(β);

c© Martial Luyts 296

• Depending on the given priors, words, and topics, LDA can now develop a new
document, based on its following framework:

c© Martial Luyts 297

• Question: But why are Dirichlet distributions chosen in this framework?

• Answer: Dirichlet distributions are conjugate priors for multinomial
distributions!

• Bayesian theory: A distributions p(θ) is said to be a conjugate prior if
the posterior distribution p(θ | x) is in the same probability distribution
family as the prior distribution p(θ);

• Here,

α = (α1, . . . , αK)

p | α = (p1, . . . , pK) ∼ Dir(K,α)

X | p = (x1, . . . , xK) ∼ Multinomial(K,p)

↓
c = (c1, . . . , cK) = number of occurences of category i

p | X,α = ∼ Dir(K, c + α) = Dir(K, c1 + α1, . . . , cK + αK)

c© Martial Luyts 298

• Similar to PLSI, LDA can be seen as a generative process, with following
steps:

1. Choose θi ∼ Dir(α), where i ∈ {1, . . . , D}, with D = # documents and α
typical sparse (i.e., α < 1);

2. Choose ϕk ∼ Dir(β), where k ∈ {1, . . . , K}, K = # topics and β typical
sparse;

3. For each word positions i, j, where i ∈ {1, . . . , D}, j ∈ {1, . . . , Ni}, and Ni

the length document i:

(a) Select a topic zi,j ∼ Multinomial(θi)

(b) Select a word wi,j ∼ Multinomial(ϕzi,j)

c© Martial Luyts 299

• Given the parameters α and β, the joint distribution of a corpus (consisting of D
documents) can be expressed as follows:

p(θ, ϕ, z,w | α, β) =

D∏
i=1

p(θi | α)

K∏
k=1

p(ϕk | β)

Ni∏
j=1

p(zi,j | θi)p(wi,j | ϕzi,j)

• Inference: To train this model, various techniques exist in the literature, i.e.,
Gibbs sampling, Variational Bayes, likelihood maximization, etc.

→ Out of scope of this course!

• Remark: LDA can be seen as a (Bayesian) generalization of the PLSI model,
where PLSI is equivalent to LDA under a uniform prior Dirichlet distribution

c© Martial Luyts 300

REFERENCES

• Useful materials can be found on Toledo!

• Remark: These materials often go deeper in the highlighted topics of this
course, and is available for the interested reader!

c© Martial Luyts 301

	1. Introduction
	 1.1 Introductory material
	 1.2 What is Text Mining
	 1.3 Comparison with other fields
	 1.4 Some text mining applications
	2. Text mining process
	 2.1 General overview
	 2.2 Text Pre-processing
	2.2.1. Text cleanup
	2.2.2. Tokenization
	2.2.3. Filtering
	2.2.4. Stemming & lemmatization
	2.2.5. Chunking & parsing
	2.2.6. Semantics
	 2.3 Attribute Generation
	2.3.1. One-hot encoding
	2.3.2. Bag of Words
	2.3.3. Term Frequency - Inverse Document Frequency
	2.3.4. Pointwise Mutual Information
	2.3.5. Word embeddings
	 2.4 Attribute Selection
	 2.5 Text Mining Techniques
	2.5.1. Language Models
	2.5.2. Text classification
	 REFERENCES

